精英家教网 > 高中数学 > 题目详情
7.设a∈($\frac{2}{3}$,1),f(x)=x3-$\frac{3}{2}$ax2+b,x∈[-1,1]的最大值为1,最小值为-$\frac{\sqrt{6}}{2}$,求f(x)

分析 先求导,根据导数和函数的最值关系,求出最值,列出关于a,b的方程,解得即可.

解答 解:∵f(x)=x3-$\frac{3}{2}$ax2+b,a∈($\frac{2}{3}$,1),x∈[-1,1]
∴f′(x)=3x2-3ax=3x(x-a),
令f′(x)=0,解得x=0或x=a,
当f′(x)>0时,即-1≤x<0,或a<x<1,函数单调递增,
当f′(x)<0时,即a<x≤1,函数单调递增,
∵f(-1)=-1-$\frac{3}{2}$a+b,f(a)=-$\frac{1}{2}$a3+b,f(0)=b,f(1)=1-$\frac{3}{2}$a+b
∴f(-1)<f(a),f(0)>f(1),
∵f(x)最大值为1,最小值为-$\frac{\sqrt{6}}{2}$,
∴-1-$\frac{3}{2}$a+b=-$\frac{\sqrt{6}}{2}$,b=1,
解得a=$\frac{\sqrt{6}}{3}$,b=1,
∴f(x)=x3-$\frac{\sqrt{6}}{2}$x2+1

点评 本题考查了利用导数求函数在某一闭区间上的最值问题,关键是判断端点值和极值的大小,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.直线x=1,y=x将圆x2+y2=4分成四块,用5种不同的颜料涂色,要求共边的两块颜色互异,每块只涂一色,则不同的涂色方案共有260.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.有一种波,其波形为函数y=sin$({\frac{π}{2}x})$的图象,若在区间[0,t]上至少有2个波峰(图象的最高点),则正整数t的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\frac{1}{{x}^{2}}$+alnx(其中a为常数),在[1,2]上的最小值为$\frac{1}{4}$+aln2或$\frac{a}{2}$+aln$\sqrt{\frac{2}{a}}$或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-xex-1.
(1)求函数f(x)的单调区间;
(2)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.a,b是两条异面直线,a?平面α,b?平面β,若α∩β=c,则直线c必定(  )
A.与a,b均相交B.与a,b都不相交
C.至少与a,b中的一条相交D.至多与a,b中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=13-8x+$\sqrt{2}$ x2,且f′(x0)=4,求x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC中,AD⊥BC,且$\frac{1}{A{C}^{2}}$=$\frac{1}{A{D}^{2}}$-$\frac{1}{A{B}^{2}}$,求证:△ABC是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|的最大值为5.

查看答案和解析>>

同步练习册答案