精英家教网 > 高中数学 > 题目详情
16.△ABC中,AD⊥BC,且$\frac{1}{A{C}^{2}}$=$\frac{1}{A{D}^{2}}$-$\frac{1}{A{B}^{2}}$,求证:△ABC是直角三角形.

分析 利用△ABC中,AD⊥BC,且$\frac{1}{A{C}^{2}}$=$\frac{1}{A{D}^{2}}$-$\frac{1}{A{B}^{2}}$,证明△ADC∽△BDA,可得∠ACD=∠BAD,即可证明结论.

解答 证明:∵△ABC中,AD⊥BC,且$\frac{1}{A{C}^{2}}$=$\frac{1}{A{D}^{2}}$-$\frac{1}{A{B}^{2}}$,
∴$\frac{1}{A{C}^{2}}$=$\frac{B{D}^{2}}{A{D}^{2}•A{B}^{2}}$,
∴$\frac{AD}{AC}$=$\frac{BD}{AB}$,
∴△ADC∽△BDA,
∴∠ACD=∠BAD,
∴∠BAD+∠CAD=∠ACD+∠CAD=90°,
∴AB⊥AC,
∴△ABC是直角三角形.

点评 本题考查三角形相似的判定与性质,考查学生分析解决问题的能力,证明三角形相似是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lg[(m2-3m+2)x2+2(m-1)x+5],如果函数f(x)的值域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a∈($\frac{2}{3}$,1),f(x)=x3-$\frac{3}{2}$ax2+b,x∈[-1,1]的最大值为1,最小值为-$\frac{\sqrt{6}}{2}$,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据微信同程旅游的调查统计显示,参与网上购票的1000位购票者的年龄(单位:岁)情况如图所示.
(1)已知中间三个年龄段的网上购票人数成等差数列,求a,b的值;
(2)为鼓励大家网上购票,该平台常采用购票就发放酒店入住代金券的方法进行促销,具体做法如下:年龄在[30,50)岁的每人发放20元,其余年龄段的每人发放50元,先按发放代金券的金额采用分层抽样的方式从参与调查的1000位网上购票者中抽取5人,并在这55人中随机抽取3人进行回访调查,求此3人获得代金券的金额总和为90元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某工厂生产的200件产品的重量(单位:kg)的频率分布直方图如图所示,则重量在[40,41)的产品大约有(  )
A.160件B.120件C.80件D.60件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{a}{x}$-xlnx(a∈R),g(x)=2x3-3x2
(1)若m为正实数,求函数y=g(x),x∈[$\frac{1}{m}$,m]上的最大值和最小值;
(2)若对任意的实数s,t∈[$\frac{1}{2}$,2],都有f(s)≤g(t),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sin2x+acosx+x在点x=$\frac{π}{6}$处取得极值.
(1)求实数a的值;
(2)当x∈[-$\frac{π}{6}$,$\frac{7π}{6}$]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x-$\frac{1}{2}$ax2-ln(x+1),其中a∈R.(提示:ln(x+1)′=$\frac{1}{x+1}$)
(1)若x=2是f(x)的极值点,求a的值;
(2)求f(x)的单调区间;
(3)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.要得到函数$f(x)=sin({3x+\frac{π}{3}})$的导函数f′(x)的图象,只需将f(x)的图象(  )
A.向右平移$\frac{π}{3}$个单位,再把各点的纵坐标伸长到原来的3倍(横坐标不变)
B.向右平移$\frac{π}{6}$个单位,再把各点的纵坐标缩短到原来的3倍(横坐标不变)
C.向左平移$\frac{π}{3}$个单位,再把各点的纵坐标缩短到原来的3倍(横坐标不变)
D.向左平移$\frac{π}{6}$个单位,再把各点的纵坐标伸长到原来的3倍(横坐标不变)

查看答案和解析>>

同步练习册答案