分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可;
(2)求出g(x)的最小值,问题转化为a≤x2lnx+x恒成立,x∈[$\frac{1}{2}$,2],令h(x)=x2lnx+x,x∈[$\frac{1}{2}$,2],根据函数的单调性求出a的范围即可.
解答 解:(1)g(x)=2x3-3x2,g′(x)=6x(x-1),
令g′(x)>0,解得:x>1或x<0,
令g′(x)<0,解得:0<x<1,
∴g(x)在(0,1)递减,在(1,+∞)递增,
若m>0,$\frac{1}{m}$<m,则m>1,$\frac{1}{m}$<1,
∴g(x)在[$\frac{1}{m}$,1)递减,在(1,m]递增,
∴g(x)min=g(1)=-1,g(x)max=g($\frac{1}{m}$)=$\frac{2}{{m}^{3}}$-$\frac{3}{{m}^{2}}$或g(m)=2m3-3m2;
(2)若对任意的实数s,t∈[$\frac{1}{2}$,2],都有f(s)≤g(t),
即f(s)max<g(t)min,s,t∈[$\frac{1}{2}$,2],
由(1)g(t)在[$\frac{1}{2}$,2]的最小值是-1,
只需$\frac{a}{x}$-xlnx≤-1即可,x∈[$\frac{1}{2}$,2],
等价于a≤x2lnx-x恒成立,x∈[$\frac{1}{2}$,2],
令h(x)=x2lnx-x,x∈[$\frac{1}{2}$,2],
显然h(x)在x∈[$\frac{1}{2}$,2]上递增,
h(x)min=h($\frac{1}{2}$)=-$\frac{1}{2}$-$\frac{1}{4}$ln2,
故a≤-$\frac{1}{2}$-$\frac{1}{4}$ln2.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 与a,b均相交 | B. | 与a,b都不相交 | ||
| C. | 至少与a,b中的一条相交 | D. | 至多与a,b中的一条相交 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲 | B. | 乙 | C. | 丙 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6+3\sqrt{3}}{4}$ | B. | $\frac{3+\sqrt{3}}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com