精英家教网 > 高中数学 > 题目详情
已知是首项为1的等比数列,的前项和,且,则数列的前5项和为
A.或5B.或5C.D.
C
解:∵等比数列前n项和公式 Sn= ,而9S3=S6
∴列等式可知q=2,
所以a1=1,a2=2,a3=4…
其倒数列前五项为1、
故前5项和为1+
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

a,b, c成等比数列,则函数y=ax2+bx+c的图象与x轴交点的个数是( )
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设等比数列{}的前n项和为,若=3,则=
A.B.2C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知{an}为递增的等比数列,且{a1,a3,a5}{-10,-6,-2,0,1,3,4,16}.
(1)求数列{an}的通项公式;
(2)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于等比数列,已知是方程的两根,则等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an},a1=2a+1(a≠-1的常数),an=2an-1+n2-4n+2(n≥2,n∈N?),数列{bn}的首项, b1=a,bn=an+n2(n≥2,n∈N?).
(1)证明:{bn}从第2项起是以2为公比的等比数列并求{bn}通项公式;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;(3)当a>0时,求数列{an}的最小项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知各项均为正数的等比数列,则
A.B.7C.6D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等比数列的公比,则等于(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等比数列{an}中,若a3a5=4,则a2a6= ( ).
A.-2 B.2 C.-4 D.4

查看答案和解析>>

同步练习册答案