| A. | 16π | B. | $\frac{81π}{4}$ | C. | 9π | D. | $\frac{27π}{4}$ |
分析 正四棱锥P-ABCD的外接球的球心在它的高PE上,求出球的半径,求出球的表面积.
解答
解:如图,正四棱锥P-ABCD中,PE为正四棱锥的高,根据球的相关知识可知,正四棱锥的外接球的球心O必在正四棱锥的高线PE所在的直线上,延长PE交球面于一点F,连接AE,AF,由球的性质可知△PAF为直角三角形且AE⊥PF,
根据平面几何中的射影定理可得PA2=PF•PE,
因为AE=$\frac{\sqrt{A{B}^{2}+B{C}^{2}}}{2}$=$\sqrt{2}$,
所以侧棱长PA=$\sqrt{P{E}^{2}+A{E}^{2}}$=3$\sqrt{2}$,PF=2R,
所以18=2R×4,所以R=$\frac{9}{4}$,
所以S=4πR2=$\frac{81π}{4}$
故选B.
点评 本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{11π}{12}$,0)∈A | B. | (-$\frac{7π}{12}$,1)∉A | ||
| C. | {(-$\frac{7π}{12}$,1),($\frac{17π}{12}$,1)}⊆A | D. | {($\frac{π}{2}$,1),($\frac{17π}{12}$,1)}⊆A |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | $\frac{29}{5}$ | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com