精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x4-$\frac{1}{3}$mx3+$\frac{1}{2}$x2+1在(0,1)上是单调递增函数,则实数m的最大值为(  )
A.4B.5C.$\frac{29}{5}$D.6

分析 求出函数的对数,问题转化为m≤4x+$\frac{1}{x}$在(0,1)恒成立,根据不等式的性质求出m的最大值即可.

解答 解:f(x)=x4-$\frac{1}{3}$mx3+$\frac{1}{2}$x2+1,f′(x)=4x3-mx2+x,
函数f(x)=x4-$\frac{1}{3}$mx3+$\frac{1}{2}$x2+1在(0,1)上是单调递增函数,
则f′(x)≥0在(0,1)恒成立,即m≤4x+$\frac{1}{x}$在(0,1)恒成立,
而4x+$\frac{1}{x}$≥2$\sqrt{4x•\frac{1}{x}}$=4,当且仅当x=$\frac{1}{2}$时“=”成立,
故m≤4,
故选:A.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是(  )
A.16πB.$\frac{81π}{4}$C.D.$\frac{27π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow a$=($\sqrt{3}$,$\sqrt{5}$),$\overrightarrow b$⊥$\overrightarrow a$,且|$\overrightarrow b$|=2,则向量$\overrightarrow b$的坐标为(-$\frac{\sqrt{10}}{2}$,$\frac{\sqrt{6}}{2}$)或($\frac{\sqrt{10}}{2}$,-$\frac{\sqrt{6}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=ln(1-x)+ax2+x
(1)当a=$\frac{1}{2}$时,试判断f(x)的单调性.
(2)当a>0时,?x∈(0,1),f(x)<0成立,求a的取值范围.
(3)求证:ln(1+n)-(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)>1-$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等比数列{an}中,a1=1,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-an),则f′(0)(  )
A.0B.16C.64D.256

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.
(I)求椭圆C的方程;
(Ⅱ)设经过F2的直线m与曲线C交于P、Q两点,若|PQ|2=|F1P|2+|F1Q|2,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(1+x)3+(1+x)4+…+(1+x)19的展开式中,含x2项的系数是1139.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=mx2-mx-1.若对一切实数x,f(x)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax-lnx,a∈R.
(1)求函数f(x)的单调区间;   
( 2)当x∈(0,e]时,求g(x)=e2x-lnx的最小值;
(3)当x∈(0,e]时,证明:e2x-lnx-$\frac{lnx}{x}$>$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案