精英家教网 > 高中数学 > 题目详情
11.函数y=3x3-9x+5在区间[-2,2]上的最大值与最小值之和是10.

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出函数的最大值和最小值,求和即可.

解答 解:∵y=3x3-9x+5,
∴y'=9x2-9=0,解得:x1=1,x2=-1,
令y′>0,解得:x>1或x<-1,
令y′(x)<0,解得:-1<x<1,
∴函数在[-2,-1)递增,在(-1,1)递减,在(1,2]递增,
∴x=-1时,y取极大值,极大值是11,
x=1时,y取极小值,极小值是-1,
而x=-2时,y=-1,x=2时,y=11,
故函数的最小值和最大值的和是10,
故答案为:10.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数y=x3+x2-x+1在区间[-2,1]上的最小值为(  )
A.$\frac{22}{27}$B.2C.-1D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是(  )
A.16πB.$\frac{81π}{4}$C.D.$\frac{27π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a≥0)
(1)当a=0时,求f(x)的单调区间;
(2)求y=f(x)在区间(0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对于曲线C:$\frac{x^2}{4-k}$+$\frac{y^2}{k-1}$=1,给出下面四个命题:
①曲线C不可能表示椭圆;    
②若曲线C表示双曲线,则k<1或k>4;
③当1<k<4时,曲线C表示椭圆;
④若曲线C表示焦点在x轴上的椭圆,则1<k<$\frac{5}{2}$.
其中所有正确命题的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2x-1+a,g(x)=bf(1-x),其中a,b∈R.若满足不等式f(x)≥g(x)的解的最小值为2,则实数a的取值范围是(  )
A.a<0B.a>-$\frac{1}{4}$C.a≤-2D.a>-$\frac{1}{4}$或a≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow a$=($\sqrt{3}$,$\sqrt{5}$),$\overrightarrow b$⊥$\overrightarrow a$,且|$\overrightarrow b$|=2,则向量$\overrightarrow b$的坐标为(-$\frac{\sqrt{10}}{2}$,$\frac{\sqrt{6}}{2}$)或($\frac{\sqrt{10}}{2}$,-$\frac{\sqrt{6}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=ln(1-x)+ax2+x
(1)当a=$\frac{1}{2}$时,试判断f(x)的单调性.
(2)当a>0时,?x∈(0,1),f(x)<0成立,求a的取值范围.
(3)求证:ln(1+n)-(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)>1-$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=mx2-mx-1.若对一切实数x,f(x)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案