精英家教网 > 高中数学 > 题目详情
17.已知某扇形的半径为10,面积为$\frac{50π}{3}$,那么该扇形的圆心角为$\frac{π}{3}$.

分析 由已知利用扇形的面积公式即可计算得解.

解答 解:∵设扇形的圆心角大小为α(rad),半径为r,则扇形的面积为S=$\frac{1}{2}$r2α.
∴由已知可得:$\frac{50π}{3}$=$\frac{1}{2}$×102×α,解得:α=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 此题考查了扇形面积的计算.此题比较简单,注意熟记公式与性质是解此题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.统计5名职工的体重数据的茎叶图如图所示,则该样本的方差为62

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,圆O:x2+y2=1,P为直线l:x=$\frac{4}{3}$上一点.
(1)若点P在第一象限,且OP=$\frac{5}{3}$,求过点P圆O的切线方程;
(2)若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;
(3)设直线l动点Q,⊙Q与⊙O相外切,⊙Q交L于M、N两点,对于任意直径MN,平面上是否存在不在直线L上的定点A,使得∠MAN为定值?若存在,直接写出点A的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在锐角△ABC中,A,B,C所对边分别为a,b,c,且b2-a2=ac,则$\frac{1}{tanA}$-$\frac{1}{tanB}$的取值范围为(  )
A.(1,+∞)B.(1,$\frac{2}{3}$$\sqrt{3}$)C.(1,$\sqrt{3}$)D.($\sqrt{2}$,$\frac{2}{3}$$\sqrt{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,周期为π,且在[$\frac{π}{4},\frac{π}{2}$]上为减函数的是(  )
A.y=sin(x+$\frac{π}{2}$)B.y=cos(x+$\frac{π}{2}$)C.y=cos(2x+$\frac{π}{2}$)D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=6+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ) 写出直线l普通方程和曲线C的直角坐标方程;
(Ⅱ) 过点M(-1,0)且与直线l平行的直线l1交C于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(Ⅰ)请在答题卡上将如表数据补充完整,并直接写出函数f(x)的解析式;
(Ⅱ)将y=f(x)图象上所有点向左平行移动$\frac{π}{6}$个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则它表面积是(  )
A.24+$\sqrt{5}$B.24-πC.24+($\sqrt{5}$-1)πD.20+($\sqrt{5}$-1)π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,根据以上程序,可求得f(-1)+f(2)=(  )
A.-1B.0C.$\frac{17}{2}$D.4

查看答案和解析>>

同步练习册答案