精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x+3
x+1
(x≠-1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an-
3
|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用数学归纳法证明bn
(
3
-1)
n
2n-1

(Ⅱ)证明Sn
2
3
3
分析:(Ⅰ)我们用数学归纳法进行证明,先证明不等式bn
(
3
-1)
n
2n-1
当n=1时成立,再假设不等式bn
(
3
-1)
n
2n-1
当n=k(k≥1)时成立,进而证明当n=k+1时,不等式bn
(
3
-1)
n
2n-1
也成立,最后得到不等式bn
(
3
-1)
n
2n-1
对于所有的正整数n成立;
(Ⅱ)根据(Ⅰ)的结论,我们可以利用放缩法证明Sn
2
3
3
,放缩后可以得到一个等比数列,然后根据等比数列前n项公式,即可得到答案.
解答:证明:(Ⅰ)当x≥0时,f(x)=1+
2
x+1
≥1.
因为a1=1,所以an≥1(n∈N*).
下面用数学归纳法证明不等式bn
(
3
-1)
n
2n-1

(1)当n=1时,b1=
3
-1,不等式成立,
(2)假设当n=k时,不等式成立,即bk
(
3
-1)
k
2k-1

那么bk+1=|ak+1-
3
|=
(
3
-1)|ak-
3
|
1+ak

3
-1
2
bk
(
3
-1)
k+1
2k

所以,当n=k+1时,不等式也成立.
根据(1)和(2),可知不等式对任意n∈N*都成立.
(Ⅱ)由(Ⅰ)知,bn
(
3
-1)
n
2n-1

所以Sn=b1+b2+…+bn≤(
3
-1)+
(
3
-1)
2
2
+…+
(
3
-1)
n
2n-1
=(
3
-1)•
1-(
3
-1
2
)
n
1-
3
-1
2
<(
3
-1)•
1
1-
3
-1
2
=
2
3
3

故对任意n∈N*,Sn
2
3
3
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案