【题目】在某次数学考试中,从甲、乙两个班各抽取10名学生的数学成绩进行统计分析,两个班样本成绩的茎叶图如图所示.
![]()
(1)用样本估计总体,若根据茎叶图计算得甲乙两个班级的平均分相同,求
的值;
(2)从甲班的样本不低于90分的成绩中任取2名学生的成绩,求这2名学生的成绩不相同的概率.
【答案】(1)
(2)![]()
【解析】
(1)分别计算
、
,即可得到
的值.
(2)首先列出从这4名学生的成绩中任取2名学生的成绩的全部基本事件,再确定这2名学生的成绩不相同的基本事件,最后根据古典概型公式求得结果.
(1)设样本中甲、乙两班的平均成绩分别为
、
,则
![]()
![]()
,
,
,
;
(2)由茎叶图知:
甲班的样本中成绩不低于90分的学生有4人,记他们的成绩分别为
,
,
,
(其中
,
表示成绩为97分的两名学生的成绩,
,
分别表示成绩为105分和107分的两名学生的成绩),则从这4名学生的成绩中任取2名学生的成绩,不同的取法有:
,
,
,
,
,
.
其中,事件“所选的
人成绩不同”所包含的基本事件有
个,
所以,这2名学生的成绩不相同的概率为
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右顶点、上顶点分别为A、B,坐标原点到直线AB的距离为
,且
.
![]()
(1)求椭圆C的方程;
(2)过椭圆C的左焦点
的直线
交椭圆于M、N两点,且该椭圆上存在点P,使得四边形MONP(图形上字母按此顺序排列)恰好为平行四边形,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”)是现在商家一种常见促销手段.今年“双十一”期间,甲、乙、丙、丁四位顾客在商场购物时,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位顾客对游戏中奖结果进行了预测,预测结果如下:
甲说:“我或乙能中奖”;
乙说:“丁能中奖”;
丙说:“我或乙能中奖”;
丁说:“甲不能中奖”.
游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线C:
与直线
交于A、B两点.
(1)当
取得最小值为
时,求
的值.
(2)在(1)的条件下,过点
作两条直线PM、PN分别交抛物线C于M、N(M、N不同于点P)两点,且
的平分线与
轴平行,求证:直线MN的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的半焦距为
,圆
与椭圆
有且仅有两个公共点,直线
与椭圆
只有一个公共点.
(1)求椭圆
的标准方程;
(2)已知动直线
过椭圆
的左焦点
,且与椭圆
分别交于
两点,试问:
轴上是否存在定点
,使得
为定值?若存在,求出该定值和点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)直线
与
轴的交点为
,经过点
的直线
与曲线
交于
两点,若
,求直线
的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于任意
,满足条件
且
(M是与n无关的常数)的无穷数列
称为M数列.
(1)若等差数列
的前
项和为
,且
,判断数列
是否是M数列,并说明理由;
(2)若各项为正数的等比数列
的前
项和为
,且
,证明:数列
是M数列,并指出M的取值范围;
(3)设数列
,问数列
是否是M数列?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com