精英家教网 > 高中数学 > 题目详情
在△ABC中,AB=AC=3,∠BAC=30°,CD是边AB上的高,则
CD
CB
=(  )
A、-
9
4
B、
9
4
C、
27
4
D、-
27
4
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由条件利用直角三角形中的边角关系求得CD的值,再利用两个向量的数量积的定义,求得
CD
CB
得知.
解答: 解:在△ABC中,AB=AC=3,∠BAC=30°,CD是边AB上的高,则有CD=AC•sin30°=
3
2

CD
CB
=|
CD
|•|
CB
|•cos∠BCD=
CD
2
=
9
4

故选:B.
点评:本题主要考查两个向量的数量积的定义,用直角三角形中的边角关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的等边三角形,SC为球O的直径,若三棱锥S-ABC的体积为
2
6
,则球O的表面积是(  )
A、4π
B、
3
4
π
C、3π
D、
4
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:
①函数y=(x-2)2+lnx的图象具有“可平行性”;
②定义在(-∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;
③三次函数f(x)=x3-x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=
2
3

④要使得分段函数f(x)=
x+
1
x
(m<x)
ex-1(x<0)
的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|2≤x≤10,且x∈N}.集合A={3,4,6,8},B={3,5,8,9},那么集合{2,7,10}=(  )
A、A∪B
B、A∩B
C、(∁UA)∩(∁UB)
D、(∁UA)∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,则“a>2”是“a2>4”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

将标号为1,2,3,4,5的五个球放入3个不同的盒子,每个盒子至少有一个球,则一共有
 
种放法.

查看答案和解析>>

科目:高中数学 来源: 题型:

右图为函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的部分图象,M、N是它与x轴的两个交点,D、C分别为它的最高点和最低点,E(0,1)是线段MD的中点,且
MD
MN
=
π2
8
,则函数f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,AC=3,AB=2,若G为△ABC的重心,则
AG
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)始终满足f(x+2)=-f(x),则f(x)的周期为
 

查看答案和解析>>

同步练习册答案