精英家教网 > 高中数学 > 题目详情
4.在△ABC中,a=4,b=5,c=6,则$\frac{sinA+sinB}{2sinC}$=$\frac{3}{4}$.

分析 由正弦定理化简所求即可计算得解.

解答 解:∵a=4,b=5,c=6,
∴$\frac{sinA+sinB}{2sinC}$=$\frac{a+b}{2c}$=$\frac{4+5}{12}$=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题主要考查了正弦定理的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知b=$\sqrt{2},c=1,B={45°}$,则此三角形有几个解(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=$\frac{1}{3}{x^3}+{x^2}$+ax-5,若函数在[1,+∞)上总是单调函数,则a的取值范围a≥-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.《数学万花筒》第7页中谈到了著名的“四色定理”.问题起源于1852年的伦敦大学学院毕业生弗朗西斯•加斯里.他给自己的弟弟弗莱德里克写的信中提到:“可以使用四种(或更少)颜色为平面上画出的每张地图着色,使任何相邻的两个地区的边界线具有不同的颜色吗?”回答他这个问题用了124年,但简单的图形我们能用逐一列举的方法解决.若用红、黄、蓝、绿四种颜色给右边的地图着色,假定区域①已着红色,区域②已着黄色,则剩余的区域③④共有2种着色方法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a|$=1,|$\overrightarrow b$|=2,$(3\overrightarrow a-\overrightarrow b)$⊥$(\overrightarrow a+\overrightarrow b)$,则向量$\overrightarrow a$与向量$\overrightarrow b$夹角的余弦值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow a=({1,t})$,$\overrightarrow b=(-5,\;2\;)$且$\overrightarrow a•\overrightarrow b=1$,求当k为何值时,
(1)k$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-3\overrightarrow b$垂直;
(2)k$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-3\overrightarrow b$平行.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法中正确的是(  )
A.若两个向量相等,则它们的起点和终点分别重合
B.模相等的两个平行向量是相等向量
C.若$\overrightarrow{a}$和$\overrightarrow{b}$都是单位向量,则$\overrightarrow{a}$=$\overrightarrow{b}$
D.零向量与其它向量都共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足方程2x+y+5=0,那么$\sqrt{{x^2}+{y^2}-4x-2y+5}$的最小值为(  )
A.2$\sqrt{10}$B.$\sqrt{10}$C.2$\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.求值$C_n^{4-n}+C_{n+1}^{9-n}$=2.

查看答案和解析>>

同步练习册答案