精英家教网 > 高中数学 > 题目详情
9.已知$\overrightarrow a=({1,t})$,$\overrightarrow b=(-5,\;2\;)$且$\overrightarrow a•\overrightarrow b=1$,求当k为何值时,
(1)k$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-3\overrightarrow b$垂直;
(2)k$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-3\overrightarrow b$平行.

分析 (1)$\overrightarrow a•\overrightarrow b=1$,可得-5+2t=1,解得t=3.k$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-3\overrightarrow b$垂直,可得(k$\overrightarrow a+\overrightarrow b$)•($\overrightarrow a-3\overrightarrow b$)=0,联立解得k.
(2)k$\overrightarrow a+\overrightarrow b$=(k-5,2k+2),$\overrightarrow a-3\overrightarrow b$=(16,-4).可得16(2k+2)+4(k-5)=0,解得k.

解答 解:(1)$\overrightarrow a•\overrightarrow b=1$,∴-5+2t=1,解得t=3.
∵k$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-3\overrightarrow b$垂直,∴(k$\overrightarrow a+\overrightarrow b$)•($\overrightarrow a-3\overrightarrow b$)=$k{\overrightarrow{a}}^{2}+(1-3k)$$\overrightarrow{a}•\overrightarrow{b}$-3${\overrightarrow{b}}^{2}$=k(1+t2)+(1-3k)-3×(25+4)=0,
联立解得 $k=\frac{86}{7}$.
(2)k$\overrightarrow a+\overrightarrow b$=(k-5,2k+2),$\overrightarrow a-3\overrightarrow b$=(16,-4).
∴16(2k+2)+4(k-5)=0,解得$k=-\frac{1}{3}$.

点评 本题考查了向量垂直与数量积的关系、向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某超市从2017年1月甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:

假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中的a值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为S12与S22,试比较S12与S22的大小(只需写出结论);
(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足an+1=3an+2(n∈N*),且a1=2.
(1)求证:数列{an+1}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(0,1),B(3,2),向量$\overrightarrow{CA}=(4,3)$,则向量$\overrightarrow{BC}$=(  )
A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,a=4,b=5,c=6,则$\frac{sinA+sinB}{2sinC}$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若角520°的始边为x轴非负半轴,则它的终边落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,过正方体ABCD-A1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作4条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知tanθ=-$\frac{5}{12}$,θ∈($\frac{3π}{2}$,2π),则cos(θ+$\frac{π}{4}$)=(  )
A.$\frac{{5\sqrt{2}}}{13}$B.$\frac{{7\sqrt{2}}}{13}$C.$\frac{{17\sqrt{2}}}{26}$D.$\frac{{7\sqrt{2}}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若半径为2cm的扇形面积为8cm2,则该扇形的周长是12.

查看答案和解析>>

同步练习册答案