精英家教网 > 高中数学 > 题目详情
1.如图所示,过正方体ABCD-A1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作4条.

分析 第一条:AC1是满足条件的直线;第二条:延长C1D1到D1,且D1D1=1,AD1是满足条件的直线;第三条:延长C1B1到B2且B1B2=1,AB2是满足条件的直线;第四条:延长C1C到C2,且C1C2=1,AC2是满足条件的直线.

解答 解:ABCD-A1B1C1D1,边长为1.
第一条:AC1是满足条件的直线;
第二条:延长C1D1到D1,且D1D1=1,AD1是满足条件的直线;
第三条:延长C1B1到B2且B1B2=1,AB2是满足条件的直线;
第四条:延长C1C到C2,且C1C2=1,AC2是满足条件的直线.
故答案为:4.

点评 本题考查满足条件的直线条数的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查分类与整合思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足a1=2,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$(n∈N*),则an=$\frac{2}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.《数学万花筒》第7页中谈到了著名的“四色定理”.问题起源于1852年的伦敦大学学院毕业生弗朗西斯•加斯里.他给自己的弟弟弗莱德里克写的信中提到:“可以使用四种(或更少)颜色为平面上画出的每张地图着色,使任何相邻的两个地区的边界线具有不同的颜色吗?”回答他这个问题用了124年,但简单的图形我们能用逐一列举的方法解决.若用红、黄、蓝、绿四种颜色给右边的地图着色,假定区域①已着红色,区域②已着黄色,则剩余的区域③④共有2种着色方法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow a=({1,t})$,$\overrightarrow b=(-5,\;2\;)$且$\overrightarrow a•\overrightarrow b=1$,求当k为何值时,
(1)k$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-3\overrightarrow b$垂直;
(2)k$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-3\overrightarrow b$平行.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法中正确的是(  )
A.若两个向量相等,则它们的起点和终点分别重合
B.模相等的两个平行向量是相等向量
C.若$\overrightarrow{a}$和$\overrightarrow{b}$都是单位向量,则$\overrightarrow{a}$=$\overrightarrow{b}$
D.零向量与其它向量都共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用数归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,在第二步时,正确的设法是(  )
A.设n=k(k∈N*)正确,再推n=k+1时正确
B.设n=k(k∈N*)正确,再推n=2k+1时正确
C.设n=k(k∈N*)正确,再推n=k+2时正确
D.设n=2k+1(k∈N*)正确,再推n=2k-1时正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足方程2x+y+5=0,那么$\sqrt{{x^2}+{y^2}-4x-2y+5}$的最小值为(  )
A.2$\sqrt{10}$B.$\sqrt{10}$C.2$\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC中,A=30°,C=105°,b=4,则a=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin2x.将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象.
(1)求g(x)的单调增区间;
(2)已知区间[m,n](m,n∈R且m<n)满足:y=g(x)在[m,n]上至少含有30个零点,在所有满足上述条件的[m,n]中,求n-m的最小值.

查看答案和解析>>

同步练习册答案