分析 (1)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的单调性,求得g(x)的单调增区间.
(2)利用正弦函数的零点和周期性,求得n-m的最小值.
解答 解:(1)把函数f(x)=2sin2x 的图象向左平移$\frac{π}{6}$个单位,可得y=2sin(2x+$\frac{π}{3}$)的图象;
再向上平移1个单位,得到函数y=g(x)=2sin(2x+$\frac{π}{3}$)+1的图象.
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{6}$,可得g(x)的单调增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{6}$,],k∈Z.
(2)令g(x)=2sin(2x+$\frac{π}{3}$)+1=0,求得sin(2x+$\frac{π}{3}$)=-$\frac{1}{2}$,∴2x+$\frac{π}{3}$=2kπ-$\frac{2π}{3}$,或2x+$\frac{π}{3}$=2kπ-$\frac{π}{3}$,
即x=kπ-$\frac{π}{2}$,或 x=kπ-$\frac{π}{3}$,k∈Z.
故函数g(x)在一个周期上有两个零点.
根据y=g(x)在[m,n]上至少含有30个零点,在所有满足上述条件的[m,n]中,
当n-m的最小值时,可取m=-$\frac{π}{2}$,n=14π-$\frac{π}{3}$,此时,n-m=14π+$\frac{π}{6}$=$\frac{85π}{6}$.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性、零点和周期性,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com