精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=2sin2x.将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象.
(1)求g(x)的单调增区间;
(2)已知区间[m,n](m,n∈R且m<n)满足:y=g(x)在[m,n]上至少含有30个零点,在所有满足上述条件的[m,n]中,求n-m的最小值.

分析 (1)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的单调性,求得g(x)的单调增区间.
(2)利用正弦函数的零点和周期性,求得n-m的最小值.

解答 解:(1)把函数f(x)=2sin2x 的图象向左平移$\frac{π}{6}$个单位,可得y=2sin(2x+$\frac{π}{3}$)的图象;
再向上平移1个单位,得到函数y=g(x)=2sin(2x+$\frac{π}{3}$)+1的图象.
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{6}$,可得g(x)的单调增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{6}$,],k∈Z.
(2)令g(x)=2sin(2x+$\frac{π}{3}$)+1=0,求得sin(2x+$\frac{π}{3}$)=-$\frac{1}{2}$,∴2x+$\frac{π}{3}$=2kπ-$\frac{2π}{3}$,或2x+$\frac{π}{3}$=2kπ-$\frac{π}{3}$,
即x=kπ-$\frac{π}{2}$,或 x=kπ-$\frac{π}{3}$,k∈Z.
故函数g(x)在一个周期上有两个零点.
根据y=g(x)在[m,n]上至少含有30个零点,在所有满足上述条件的[m,n]中,
当n-m的最小值时,可取m=-$\frac{π}{2}$,n=14π-$\frac{π}{3}$,此时,n-m=14π+$\frac{π}{6}$=$\frac{85π}{6}$.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性、零点和周期性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.如图所示,过正方体ABCD-A1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作4条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{1}{2}{x^2}+{e^x}-x{e^x}$,x∈[-2,+∞)的单调减调区间是[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若半径为2cm的扇形面积为8cm2,则该扇形的周长是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow a=({1,2sinθ}),\overrightarrow b=({sin({θ+\frac{π}{3}}),1}),θ∈R$.
(1)若$\overrightarrow a⊥\overrightarrow b$,求tanθ的值;
(2)若$\overrightarrow a∥\overrightarrow b$,且$θ∈[{0,\frac{π}{2}}]$,求角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-4,1),则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$方向上的投影为-$\frac{5\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{3}$cos4x+2sinxcosx-$\sqrt{3}$sin4x.
(1)当x∈[0,$\frac{π}{2}$]时,求f(x)的最大值、最小值以及取得最值时的x值;
(2)设g(x)=3-2m+mcos(2x-$\frac{π}{6}$)(m>0),若对于任意x1∈[0,$\frac{π}{4}$],都存在x2∈[0,$\frac{π}{4}$],使得f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{x+a}{{{x^2}+3{a^2}}}(a≠0,a∈R)$.
(1)设函数$g(x)=\frac{{{x^2}+12}}{x+2}{e^x}$,当a=-2时,讨论y=f(x)g(x)的单调性,并证明当x>0时,(x-2)ex+x+2>0
(2)求函数f(x)的单调区间;
(3)当a=1时,若对任意x1,x2∈[-3,+∞),有f(x1)-f(x2)≤m成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在数列{an}中,a1=1,an+1=can+cn+1(2n+1)(n∈N*),其中实数c≠0.
(1)求a2,a3,并由此归纳出{an}的通项公式
(2)用数学归纳法证明(Ⅰ)的结论.

查看答案和解析>>

同步练习册答案