精英家教网 > 高中数学 > 题目详情
6.用数归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,在第二步时,正确的设法是(  )
A.设n=k(k∈N*)正确,再推n=k+1时正确
B.设n=k(k∈N*)正确,再推n=2k+1时正确
C.设n=k(k∈N*)正确,再推n=k+2时正确
D.设n=2k+1(k∈N*)正确,再推n=2k-1时正确

分析 根据连续正奇数的差为2得出正确选项.

解答 解:由于连续正奇数相差为2,故在假设n=k成立时,应推导n=k+2成立即可.
故选C.

点评 本题考查了数学归纳法的证明步骤,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知钝角△ABC中,三条边长为连续正整数.
(1)求最大角的余弦值;
(2)求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(0,1),B(3,2),向量$\overrightarrow{CA}=(4,3)$,则向量$\overrightarrow{BC}$=(  )
A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若角520°的始边为x轴非负半轴,则它的终边落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,过正方体ABCD-A1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l可以作4条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题正确的是(  )
A.若两个平面平行于同一条直线,则这两个平面平行
B.若有两条直线与两个平面都平行,则这两个平面平行
C.若有一条直线与两个平面都垂直,则这两个平面平行
D.若有一条直线与这两个平面所成的角相等,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知tanθ=-$\frac{5}{12}$,θ∈($\frac{3π}{2}$,2π),则cos(θ+$\frac{π}{4}$)=(  )
A.$\frac{{5\sqrt{2}}}{13}$B.$\frac{{7\sqrt{2}}}{13}$C.$\frac{{17\sqrt{2}}}{26}$D.$\frac{{7\sqrt{2}}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若曲线y=2x-x3在点P处的切线的斜率是-1,则P的横坐标为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-4,1),则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$方向上的投影为-$\frac{5\sqrt{13}}{13}$.

查看答案和解析>>

同步练习册答案