精英家教网 > 高中数学 > 题目详情
已知点,则线段AB的方程为(    )
A.B.
C.D.
线段AB上的点的坐标都是方程的解,以方程的解为坐标的点都在线段AB上,所以线段AB的方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知常数,在矩形中,的中点.点分别在上移动,且的交点(如图).问是否存在两个定点,使点到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设过点,倾斜角为的直线与抛物线相交于两点,抛物线的顶点在原点,以轴为对称轴,若成等比数列,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过定点A(1,0),且焦点在x轴上,椭圆与曲线|y|=x的交点为B、C。现有以A为焦点,过点B、C且开口向左的抛物线,抛物线的顶点坐标为M(m,0)。当椭圆的离心率e满足时,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆4x2+y2=1的平行弦的斜率为2,求这组平行弦中点的轨迹.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆=1(ab>0)与直线l: x+y=1在第一象限内有两个不同的交点,求ab所满足的条件,并画出点P(a,b)的存在区域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,设是椭圆的左焦点,直线为对应的准线,直线 与轴交于点,为椭圆的长轴,已知,且
(1)求椭圆的标准方程;(2)求证:对于任意的割线,恒有
(3)求三角形△ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)原点O及直线为曲线C的焦点和相应的准线;
(2)被直线垂直平分的直线截曲线C所得的弦长恰好为
若存在,求出曲线C的方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图, 共顶点的椭圆①,②与双曲线③,④的离心率分别
,其大小关系为 (   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案