分析 (1)设等差数列{an}的公差为d,利用等差数列的通项公式与求和公式即可得出.
(2)令an≥0,解得n≤6.可得n=5,或6时,Sn取得最大值.
解答 解:(1)设等差数列{an}的公差为d,
∵a1+a3=16,S4=28.∴2a1+2d=16,4a1+$\frac{4×3}{2}$d=28,
联立解得:a1=10,d=-2.
∴an=10-2(n-1)=12-2n.
(2)令an=12-2n≥0,解得n≤6.
∴n=5,或6时,Sn取得最大值,为S6=$\frac{6×(10+0)}{2}$=30.
点评 本题考查了等差数列的通项公式与求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -2 | C. | -$\frac{5}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com