精英家教网 > 高中数学 > 题目详情
7.圆x2+y2+4x-2y+a=0截直线x+y+5=0所得弦的长度为2,则实数a=(  )
A.-4B.-2C.4D.2

分析 求出圆心和半径,根据弦长公式进行求解即可.

解答 解:圆的标准方程为(x+2)2+(y-1)2=5-a,r2=5-a,
则圆心(-2,1)到直线x+y+5=0的距离为$\frac{|-2+1+5|}{\sqrt{2}}$=2$\sqrt{2}$,
由12+(2$\sqrt{2}$)2=5-a,得a=-4,
故选:A.

点评 本题主要考查直线和圆相交以及弦长公式的应用,求出圆心和半径是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x(x取整数)元与日销售量y台之间有如表关系:
x35404550
y56412811
(1)画出散点图,并判断y与x是否具有线性相关关系?
(2)求日销售量y对销售单价x的线性回归方程;
(3)设经营此商品的日销售利润为P元,根据(1)写出P关于x的函数关系式,并预测当销售单价x为多少元时,才能获得最大日销售利润.($\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.$\int_{-2}^0{\sqrt{4-{{({x+2})}^2}}}$dx=π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则下列不等式一定成立的是(  )
A.f( cos$\frac{2π}{3}$)>f(sin$\frac{2π}{3}$)B.f(sin 1)<f(cos 1)
C.f(sin$\frac{π}{6}$)<f(cos$\frac{π}{6}$)D.f(cos 2)>f(sin 2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知{an}是等差数列,Sn是其前n项和.已知a1+a3=16,S4=28.
(1)求数列{an}的通项公式
(2)当n取何值时Sn最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sinα=$\frac{{2\sqrt{2}}}{3}$,cos(α+β)=-$\frac{1}{3}$,且α,β∈(0,$\frac{π}{2}$),则sin(α-β)的值等于$\frac{10\sqrt{2}}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,圆O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交圆O于点N,过点N的切线交CA的延长线于点P,连接BC,CN.
(1)求证:∠BCN=∠PMN;
(2)若∠BCN=60°,PM=1,求OM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列a1,a2,a3,a4满足a1=a4,$\frac{1}{2}$an-$\frac{1}{2{a}_{n+1}}$=an+1-$\frac{1}{{a}_{n}}$(n=1,2,3),则a1所有可能的值构成的集合为(  )
A.{±$\frac{1}{2}$,±1}B.{±1,±2}C.{±$\frac{1}{2}$,±2}D.{±$\frac{1}{2}$,±1,±2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=lnx-$\frac{2(x-1)}{x+1}$(x>1).
(1)判断函数f(x)的单调性;
(2)证明:①ln$\frac{n}{n-1}$>$\frac{1}{n}$;
②$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$<lnn(n∈N,n≥2).

查看答案和解析>>

同步练习册答案