精英家教网 > 高中数学 > 题目详情
10.在三棱柱ABO-A′B′O′中,∠AOB=90°,侧棱OO′⊥面OAB,OA=OB=OO′=2,若C为线段O′A的中点,在线段BB′上求一点E,使|EC|最小.

分析 画出图形,转化距离为三角形BCB′的高即可.

解答 解:如图:由题意三棱柱ABO-A′B′O′中,∠AOB=90°,侧棱OO′⊥面OAB,OA=OB=OO′=2,C为线段O′A的中点,在线段BB′上求一点E,使|EC|最小.
可知:就是三角形BCB′的底边BB′上的高,
由题意BO⊥平面AOO′A′,作CF⊥AO于F,F为AO的中点.
BC=$\sqrt{{CF}^{2}+{BF}^{2}}$=${\sqrt{1+(\sqrt{{2}^{2}+{1}^{2}})^{2}}}^{\;}$=$\sqrt{6}$,
B′C=$\sqrt{{BF}^{2}+(BB′{-CF)}^{2}}$=$\sqrt{({\sqrt{5})}^{2}+{1}^{2}}$=$\sqrt{6}$,可得三角形BCB′是等腰三角形,
底边BB′上的高为|EC|最小值:$\sqrt{{(\sqrt{6})}^{2}-{1}^{2}}=\sqrt{5}$.

点评 本题考查空间几何体的距离的求法,直线与平面垂直的判断,考查空间想象能力以及计算能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,直角梯形上、下底的和是14厘米,阴影部分面积是12平方厘米,EF是3厘米,求梯形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知梯形ABCP,如图(1)所示,D是CP边的中点,AB∥PC,且2AB=PC,△APD为等边三角形,现将平面APD沿AD翻折,使平面APD⊥平面ABCD,得到如图(2)所示的四棱锥P-ABCD,点M在棱PC上,且PM=$\sqrt{3}$MC.
(1)证明:AD⊥PB;
(2)求二面角P-AD-M的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示的三棱锥P-ABC的三条侧棱两两垂直,且PB=1,PA=$\sqrt{3}$,PC=$\sqrt{6}$.
(1)求其体积.(一直线和一平面内两相交直线垂直,则直线与平面垂直)
(2)求点P到面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在三棱柱ABC-A1B1C1中,E,F分别是AC1,CB1的中点,P是C1B1的中点,则与平面PEF平行的三棱柱的棱的条数是 (  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从空间一点P向二面角α-l-β的两个面α、β分别作垂线PE、PF,E,F分别为垂足,若∠EPF=40°,则二面角的平面角的大小是(  )
A.40°B.40°或140°C.140°D.50°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,矩形CDEF所在的平面与直角梯形ABCD所在的平面垂直,其中AB∥CD,AB=1,BC=$\frac{1}{2}CD=2$,BC⊥CD,MB∥FC,MB=FC=3.P、Q分别为BC、AE的中点.
(1)求证:PQ∥平面MAB;
(2)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cos($\frac{π}{3}$+x)cos($\frac{π}{3}$-x)-sinxcosx+$\frac{1}{4}$.
(1)求函数f(x)的对称中心及在[-$\frac{π}{4}$,$\frac{π}{4}$]的取值范围;
(2)若△ABC为非直角三角形,a,b,c分别为A,B,C所对的边,f(A)=-$\frac{1}{2}$,b=1,S△ABC=2,求$\frac{a+b}{sinA+sinB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4{b}^{\frac{2}{3}}}$÷(a${\;}^{-\frac{2}{3}}$-$\frac{2\root{3}{b}}{a}$)•$\frac{\sqrt{a\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•\root{3}{a}}}$.

查看答案和解析>>

同步练习册答案