精英家教网 > 高中数学 > 题目详情
5.在三棱柱ABC-A1B1C1中,E,F分别是AC1,CB1的中点,P是C1B1的中点,则与平面PEF平行的三棱柱的棱的条数是 (  )
A.3B.4C.5D.6

分析 由已知条件利用三角形中位线的性质得PF∥CC1,PE∥AB1,EF∥AB,由此利用平行公理和直线与平面平行的判定理得到与平面PEF平行的三棱柱的棱的条数.

解答 解:∵三棱柱ABC-A1B1C1中,E,F分别是AC1,CB1的中点,P是C1B1的中点,
∴PF∥CC1,PE∥AB1,EF∥AB,
∴CC1∥平面PEF,AA1∥平面PEF,BB1∥平面PEF,
AB∥平面PEF,A1B1∥平面PEF,
∴平与平面PEF平行的三棱柱的棱的条数有5条.
故选:C.

点评 本题考查与平面PEF平行的三棱柱的棱的条数的求法,是基础题,解题时要注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知一个四面体其中五条棱的长分别为1,1,1,1,$\sqrt{2}$,则此四面体体积的最大值是(  )
A.$\frac{{\sqrt{3}}}{12}$B.$\frac{{\sqrt{2}}}{12}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{x+m}{x}$(m∈R).
(1)当m=1时,解不等式f(x)≥2;
(2)若f(x)≤lnx在(0,+∞)上恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直三棱柱底面各边的比为17:10:9,侧棱长为16cm,全面积为1440cm2,求底面各边之长.(提示:设△ABC的三边长分别为a,b,c,记p=$\frac{1}{2}$(a+b+c),则△ABC的面积S△ABC=$\sqrt{p(p-a)(p-b)(p-c)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在棱长为a的正方体ABCD-A1B1C1D1中.求:
(1)面A1ABB1与面ABCD所成角的大小;
(2)二面角C1-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在三棱柱ABO-A′B′O′中,∠AOB=90°,侧棱OO′⊥面OAB,OA=OB=OO′=2,若C为线段O′A的中点,在线段BB′上求一点E,使|EC|最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17. 如图,正三棱柱ABC-A1B1C1的各棱均相等,AB=2,D是BC上的一点,AD⊥C1D.
(1)求证:AD⊥侧面BCC1B1
(2)求证:A1B∥面ADC1
(3)求异面直线A1B与DC1所成角;
(4)求CA与平面AC1D所成角的大小;
(5)求二面角D-AC1-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,多面体A1B1-ABC中,△ABC与△AA1C都是边长为2的正三角形,四边形ABB1A1是平行四边形,且平面A1AC⊥平面ABC.
(1)求证:A1B⊥AC1
(2)在线段BB1上是否存在点M,使得过CM的平面与直线AB平行,且与底面ABC所成的角为45°?若存在,请确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(1)若数列{an}中的前n项和Sn=n2-10n(n∈N*),则an=2n-11.
(2)若数列{an}中的前n项和Sn=2n2-n+1(n∈N*),则an=$\left\{\begin{array}{l}{2,}&{n=1}\\{4n-3,}&{n≥2}\end{array}\right.$.
(3)若数列{an}中的前n项和Sn=2n-1(n∈N*),则an=2n-1

查看答案和解析>>

同步练习册答案