精英家教网 > 高中数学 > 题目详情

已知点P是抛物线y2=2x上的动点,点P到准线的距离为d,且点P在y轴上的射影是M,点A(数学公式,4),则|PA|+|PM|的最小值是________.


分析:由题意利用抛物线的定义可得,当A、P、M共线时,|PA|+|PM|取得最小值,由此求得答案.
解答:抛物线焦点F(,0),准线x=-,延长PM交准线于N,由抛物线定义|PF|=|PN|,
∵|PA|+|PM|+|MN|=|PA|+|PN|=|PA|+|PF|≥|AF|=5,而|MN|=,∴PA|+|PM|≥5-=
当且仅当A,P,F三点共线时,取“=”号,此时,P位于抛物线上,∴|PA|+|PM|的最小值为
故答案为

点评:本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(
7
2
,4)
,则|PA|+|PM|的最小值是(  )
A、5
B、
9
2
C、4
D、AD

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,过点P作y轴垂线PM,垂足为M,点A的坐标是A(
7
2
,4)
,则|PA|+|PM|的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上动点,求P到直线l:x-y+6=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,F是抛物线的焦点,若点A(3,2),则|PA|+|PF|的最小值是
7
2
7
2

查看答案和解析>>

同步练习册答案