| 日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
| 昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
| 就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
分析 (1)本题是一个古典概型,试验发生包含的事件是从6组数据中选取2组数据共有C62种情况,满足条件的事件是抽到相邻两个月的数据的情况有5种,根据古典概型的概率公式得到结果.
(2)根据所给的数据,求出x,y的平均数,根据求线性回归方程系数的方法,求出系数b,把b和x,y的平均数,代入求a的公式,做出a的值,写出线性回归方程.
(3)根据所求的线性回归方程,预报当自变量为10和6时的y的值,把预报的值同原来表中所给的10和6对应的值做差,差的绝对值不超过2,得到线性回归方程理想.
解答 解:(1)设柚到相邻两个月的教据为事件A.因为从6组教据中选取2组教据共有15种情况,每种情况都是等可能出现的其中,抽到相邻两个月份的教据的情况有5种,所以$P(A)=\frac{5}{15}=\frac{1}{3}$.
(2)由教据求得$\overline x=11,\overline y=24$,由公式求得$b=\frac{18}{7}$,再由$a=\overline y-b\overline x=-\frac{30}{7}$.
所以y关于x的线性回归方程为$\widehaty=\frac{18}{7}x-\frac{30}{7}$.
(3)当x=10时,$\widehaty=\frac{150}{7},|{\frac{150}{7}-22}|<2$;同样,当x=6时,$\widehaty=\frac{78}{7},|{\frac{78}{7}-12}|<2$,
所以该小组所得线性回归方程是理想的.
点评 本题考查线性回归方程的求法,考查了线性分析的应用,考查解决实际问题的能力,是一个综合题目,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 19 | B. | 20 | C. | 21 | D. | 22 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,则$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$ | |
| B. | △ABC中,A>B是sinA>sinB的充分必要条件 | |
| C. | 命题“若a=-1,则f(x)=ax2+2x-1只有一个零点”的逆命题为真 | |
| D. | 设命题p:?x>0,x2>2x,则¬p:?x0≤0,x02≤2x0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com