精英家教网 > 高中数学 > 题目详情
2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{3}=1(a>\sqrt{3})$的右焦点为F,右顶点为A,设离心率为e,且满足$\frac{1}{{|{OF}|}}+\frac{1}{{|{OA}|}}=\frac{3e}{{|{AF}|}}$,其中O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,1)的直线l与椭圆交于M,N两点,求△OMN面积的最大值.

分析 (Ⅰ)设椭圆的焦半距为c,结合题意分析可得$\frac{1}{c}+\frac{1}{a}=\frac{3e}{a-c}$,结合椭圆的几何性质可得a、b的值,代入椭圆的方程即可得答案;
(Ⅱ)由题意分析可得直线l与x轴不垂直,设其方程为y=kx+1,联立l与椭圆C的方程,可得(4k2+3)x2+8kx-8=0,结合根与系数的关系可以用k表示|MN|与O到l的距离,由三角形面积公式计算可得△OMN的面积$S=\frac{1}{2}d|{MN}|=\frac{{2\sqrt{6}\sqrt{2{k^2}+1}}}{{4{k^2}+3}}=2\sqrt{6}\sqrt{\frac{{2{k^2}+1}}{{{{(4{k^2}+3)}^2}}}}$,由基本不等式分析可得答案.

解答 解:(Ⅰ)设椭圆的焦半距为c,则|OF|=c,|OA|=a,|AF|=a-c.
所以$\frac{1}{c}+\frac{1}{a}=\frac{3e}{a-c}$,其中$e=\frac{c}{a}$,
又b2=3=a2-c2,联立解得a=2,c=1.
所以椭圆C的方程是$\frac{x^2}{4}+\frac{y^2}{3}=1$.   
(Ⅱ)由题意直线不能与x轴垂直,否则将无法构成三角形.  
当直线l与x轴不垂直时,设其斜率为k,那么l的方程为y=kx+1.
联立l与椭圆C的方程,消去y,得(4k2+3)x2+8kx-8=0.
于是直线与椭圆有两个交点的充要条件是△=(8k)2+32(4k2+3),这显然大于0.
设点M(x1,y1),N(x2,y2).
由根与系数的关系得${x_1}+{x_2}=-\frac{8k}{{4{k^2}+3}}$,${x_1}{x_2}=-\frac{8}{{4{k^2}+3}}$.    
所以$|{MN}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\frac{{4\sqrt{6}\sqrt{2{k^2}+1}\sqrt{1+{k^2}}}}{{4{k^2}+3}}$,又O到l的距离$d=\frac{1}{{\sqrt{1+{k^2}}}}$.
所以△OMN的面积$S=\frac{1}{2}d|{MN}|=\frac{{2\sqrt{6}\sqrt{2{k^2}+1}}}{{4{k^2}+3}}=2\sqrt{6}\sqrt{\frac{{2{k^2}+1}}{{{{(4{k^2}+3)}^2}}}}$;
令t=4k2+3≥3,那么$S=2\sqrt{3}\sqrt{\frac{t-1}{t^2}}=2\sqrt{3}\sqrt{-\frac{1}{t^2}+\frac{1}{t}}≤\frac{{2\sqrt{6}}}{3}$,当且仅当t=3时取等.
所以△OMN面积的最大值是$\frac{{2\sqrt{6}}}{3}$.

点评 本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,关键是由椭圆的几何性质求出椭圆的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知2sinx=1+cosx,则$cot\frac{x}{2}$=(  )
A.2B.2或$\frac{1}{2}$C.2或0D.$\frac{1}{2}$或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点P(4,-3)在角φ的终边上,函数f(x)=sin(ωx+φ)(ω>0)图象上与y轴最近的两个对称中心间的距离为$\frac{π}{2}$,则f($\frac{π}{8}$)的值为(  )
A.$\frac{7\sqrt{2}}{10}$B.-$\frac{7\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{10}$D.-$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等差数列{an}的前n项和为Sn,并且a2=2,S5=15,数列{bn}满足${b_n}=2-\frac{n+2}{2^n}({n∈{N^+}})$,记集合$M=\left\{{n|\frac{{2{S_n}({2-{b_n}})}}{n+2}≥λ,n∈{N^*}}\right\}$,若M的子集个数为16,则实数λ的取值范围为$\frac{15}{16}$<λ≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设实数a>b>0,c>0,则下列不等式一定正确的是(  )
A.$0<\frac{a}{b}<1$B.$ln\frac{a}{b}>0$C.ca>cbD.ac-bc<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|2x+1|-|2-2x|.
(Ⅰ)将函数化为分段函数的形式;
(Ⅱ)写出不等式|f(x)|<1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点C是圆F:(x+1)2+y2=16上的任意一点,点F为圆F的圆心,点F′与点F关于平面直角系的坐标原点对称,线段CF′的垂直平分线与线段CF交于点P.
(1)求动点P的轨迹E的方程;
(2)若轨迹E与y轴正半轴交于点M,直线$l:y=kx+2\sqrt{3}$交轨迹E于A,B两点,求△ABM面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数$f(x)=\left\{\begin{array}{l}a-x,x<2\\{log_2}x,x≥2\end{array}\right.$,(a>0且a≠1)的值域是[1,+∞),则实数a的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.表面积为16π的球面上有四个点P,A,B,C,且△ABC是边长为$2\sqrt{3}$的等边三角形,若平面PAB⊥平面ABC,则棱锥P-ABC体积的最大值为3.

查看答案和解析>>

同步练习册答案