精英家教网 > 高中数学 > 题目详情
11.若函数$f(x)=\left\{\begin{array}{l}a-x,x<2\\{log_2}x,x≥2\end{array}\right.$,(a>0且a≠1)的值域是[1,+∞),则实数a的取值范围是[3,+∞).

分析 根据分段函数值域是[1,+∞),当x≥2时,值域为[1,+∞),可得f(x)=a-x,x<2,的最小值大于等于1.可得答案.

解答 解:由题意,$f(x)=\left\{\begin{array}{l}a-x,x<2\\{log_2}x,x≥2\end{array}\right.$的值域是[1,+∞),
当x≥2时,值域为[1,+∞),
∴f(x)=a-x,x<2的最小值大于等于1.
∴a-2≥1,
可得a≥3.
故答案为:[3,+∞)

点评 本题考查对数函数的单调性判断值域,在去判断一次函数的值域.属于函数函数性质应用题,较容易.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.用区间表示下列集合:{x!x≤4},{x|x≤4且x≠0},{x|x≤4且x≠0,x≠-1},{x|x≤0或x>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{3}=1(a>\sqrt{3})$的右焦点为F,右顶点为A,设离心率为e,且满足$\frac{1}{{|{OF}|}}+\frac{1}{{|{OA}|}}=\frac{3e}{{|{AF}|}}$,其中O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,1)的直线l与椭圆交于M,N两点,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{-lo{g}_{2}(3-x),x<2}\\{{2}^{x-2}-1,x≥2}\end{array}\right.$,若f(2-a)=1,则f(a)=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图1,在矩形ABCD中,AB=5,AD=2,点E,F分别在边AB,CD上,且AE=4,DF=1,AC交DE于点G.现将△ADF沿AF折起,使得平面ADF⊥平面ABCF,得到图2.
(Ⅰ)在图2中,求证:CE⊥DG;
(Ⅱ)若点M是线段DE上的一动点,问点M在什么位置时,二面角M-AF-D的余弦值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x+1|+|2x+a|,若f(x)的最小值为2.
(1)求实数a的值;
(2)若a>0,且m,n均为正实数,且满足m+n=a,求m2+n2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F1,F2分别是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的左、右焦点,A为双曲线右支上一点,且2$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{O{F}_{1}}$,2$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{O{F}_{2}}$,则|$\overrightarrow{OQ}$|-|$\overrightarrow{OP}$|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={-1,0,1},B={x|x2<1},则A∩B=(  )
A.B.{0}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P为$E:\frac{x^2}{4}+\frac{y^2}{2}=1$上的动点,点Q满足$\overrightarrow{OQ}=\frac{1}{3}\overrightarrow{OP}$.
(1)求点Q的轨迹M的方程;
(2)直线l:y=kx+n与M相切,且与圆${x^2}+{y^2}=\frac{4}{9}$相交于A,B两点,求△ABO面积的最大值(其中O为坐标原点).

查看答案和解析>>

同步练习册答案