精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=|1-2x|-|1+x|.
(1)解不等式f(x)≥4;
(2)若关于x的不等式a2+2a+|1+x|>f(x)恒成立,求实数a的取值范围.

分析 (1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(2)由题意可得 a2+2a>|2x-1|-|2x+2|,再利用绝对值三角不等式求得|2x-1|-|2x+2|的最大值为3,可得a2+2a>3,求得a的范围.

解答 解:(1)∵f(x)=|1-2x|-|1+x|,故f(x)≥4,即|1-2x|-|1+x|≥4.
∴$\left\{\begin{array}{l}{x<-1}\\{1-2x+x+1≥4}\end{array}\right.$①,或$\left\{\begin{array}{l}{-1≤x≤\frac{1}{2}}\\{1-2x-x-1≥4}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{2x-1-x-1≥4}\end{array}\right.$③.
解①求得x≤-2,解②求得x∈∅,解③求得x≥6,
综上可得,云不等式的解集为{x|x≤-2,或x≥6}.
(2)关于x的不等式a2+2a+|1+x|>f(x)恒成立,即 a2+2a>|2x-1|-|2x+2|,
而|2x-1|-|2x+2|≤|2x-1-(2x-2)|=3,故有a2+2a>3,求得a<-3,或a>1.
即实数a的取值范围为{a|a<-3,或a>1}.

点评 本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知a,b∈R+,则(a+$\frac{1}{a}$)•(b+$\frac{1}{b}$)的最小值是(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:函数y=2sin(x+$\frac{π}{2}}$)是奇函数;命题q:函数y=cosx的图象关于直线x=$\frac{π}{2}$对称.则下列判断正确的是(  )
A.p为真B.?q为假C.p∧q为假D.p∨q为真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,C=$\frac{π}{3}$.
(Ⅰ)若2sinB+2sin(A-C)=$\sqrt{3}$,求角A的大小;
(Ⅱ)若△ABC的面积为2$\sqrt{3}$,c=2$\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知m>1且关于x的不等式m-|x-2|≥1的解集为[0,4].
(1)求m的值;
(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=cosx-x2,对于[-$\frac{π}{2}$,$\frac{π}{2}$]上的任意x1,x2,有如下条件:①x1>x2;②|x1|>|x2|;③|x1|>x2.其中能使f(x1)<f(x2)恒成立的条件序号是(  )
A.B.C.①②D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,点O是BC的中点,过点O的直线分别与边AB、AC所在直线交于不同的两点M、N,若向量$\overrightarrow{AB}=m\overrightarrow{AM}$,$\overrightarrow{AC}=n\overrightarrow{AN}(m,n∈R)$,则mn的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的首项al=1,an+1=$\frac{4{a}_{n}}{{a}_{n}+2}$(n∈N*).
(I)证明:数列{$\frac{1}{{a}_{n}}$-$\frac{1}{2}$}是等比数列;
(Ⅱ)设bn=$\frac{n}{{a}_{n}}$,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}满足a2=2,a6=0,则数列{an}的公差为(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

同步练习册答案