精英家教网 > 高中数学 > 题目详情

【题目】在棱长为的正方体中,分别是的中点,过三点的平面与正方体的下底面相交于直线

(1)画出直线

(2)的长;

(3)求D到的距离.

【答案】(1)见解析;(2);(3)

【解析】

(1)根据正方体的几何特征,连接DM并延长交D1A1的延长线于Q.连接NQ,即可得到满足条件的直线l;
(2)若l∩A1B1=P,即QN∩A1B1=P,易根据三角形全等的性质得到A1QD1的中点.进而求出PB1的长;
(3)作D1H⊥lH,连接DH,根据正方体的几何特征,易得DH⊥l,即DH的长就是Dl的距离.解Rt△QD1N即可得到答案.

(1)连结DM并延长交D1A1的延长线于Q,连结NQ,则NQ所在直线即为所求的直线

(2)QNA1B1=P,∵AM=A1M,∠AMD=∠A1MQ, ∠DAM=∠QA1M,易证得,所以,A1QD1的中点.

(3)H,连接,可证明

的长就是D的距离.

中,两直角边,斜边QN=

所以 ,所以

D的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,且平面, ,的中点.

(1)求证:

(2)求三棱锥的体积;

(3)探究在上是否存在点,使得平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中, ,点分别是的中点.

(1)求证: ∥平面

(2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体,关于其结构特征,下列说法不正确的是

A. 该几何体是由两个同底的四棱锥组成的几何体

B. 该几何体有12条棱、6个顶点

C. 该几何体有8个面,并且各面均为三角形

D. 该几何体有9个面,其中一个面是四边形,其余均为三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a2=8,Sn= ﹣n﹣1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{ }的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆、圆均满足圆心在直线上,过点,且与直线l2:x=-1相切.

1)当时,求圆,圆的标准方程;

2)直线l2与圆、圆分别相切于AB两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,且 的中点,且 ,则的最短边的边长为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=tan.

(1)f(x)的定义域与最小正周期;

(2)α,f=2cos 2α,α的大小.

查看答案和解析>>

同步练习册答案