精英家教网 > 高中数学 > 题目详情
(2013•济南一模)已知函数f(x)=2sin(ωx-
π
6
)(ω>0)的最小正周期为π,则f(x)的单调递增区间(  )
分析:由函数的周期求得ω=2,可得函数f(x)=2sin(2x-
π
6
),令 2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈z,求得x的范围,即可得到f(x)的单调递增区间.
解答:解:∵函数f(x)=2sin(ωx-
π
6
)(ω>0)的最小正周期为π,∴
ω
=π,解得ω=2.
故函数f(x)=2sin(2x-
π
6
).
令 2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈z,求得 kπ-
π
6
≤x≤kπ+
π
3
,k∈z,
故函数的单调递增区间是[kπ-
π
6
,kπ+
π
3
](k∈Z),
故选 D.
点评:本题主要考查函数y=Asin(ωx+φ)周期性和单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•济南一模)“a=1”是“函数f(x)=|x-a|在区间[2,+∞)上为增函数”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)已知实数x,y满足
y≥1
y≤2x-1
x+y≤8
,则目标函数z=x-y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)等差数列{an}中,a2+a8=4,则它的前9项和S9=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)已知抛物线y2=4x的焦点F恰好是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右顶点,且渐近线方程为y=±
3
x,则双曲线方程为
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)函数y=sin(
π2
x+φ)(φ>0)的部分图象如图所示,设P是图象的最高点,A,B是图象与x轴的交点,则tan∠APB=
-2
-2

查看答案和解析>>

同步练习册答案