【题目】一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,若两只蚂蚁均从点A(1,0)同时逆时针匀速爬动,若红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0°<α<β<180°),如果两只蚂蚁都在第14秒时回到A点,并且在第2秒时均位于第二象限,求α,β的值.
【答案】α=()°,β=()°.
【解析】
试题确定α=180°,β=180°,m,n∈Z,利用2α,2β均为钝角,即可得到结论.
解:根据题意可知:14α,14β均为360°的整数倍,故可设14α=m360°,m∈Z,14β=n360°,n∈Z,从而可知α=180°,β=180°,m,n∈Z.
又由两只蚂蚁在第2秒时均位于第二象限,则2α,2β在第二象限.
又0°<α<β<180°,从而可得0°<2α<2β<360°,
因此2α,2β均为钝角,即90°<2α<2β<180°.
于是45°<α<90°,45°<β<90°.
∴45°<180°<90°,45°<180°<90°,
即<m<,<n<.
又∵α<β,∴m<n,从而可得m=2,n=3.
即α=()°,β=()°.
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时,的值为2千克/年;当时,是的一次函数;当时,因缺氧等原因,的值为0千克/年.
(1)当时,求关于的函数表达式.
(2)当养殖密度为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)将曲线的参数方程化为普通方程,并将曲线的极坐标方程化为直角坐标方程;
(2)求曲线与曲线交点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足:.
(1)若,求数列的通项公式;
(2)设数列的前项和为,且试确定的值,使得数列为等差数列;
(3)将数列中的部分项按原来顺序构成新数列,且,求证:存在无数个满足条件的无穷等比数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com