1£®ÏÂÁÐÃüÌâÖÐ
¢ÙÈô|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|£¬Ôò$\overrightarrow{a}$¡Î$\overrightarrow{b}$
¢Ú$\overrightarrow{a}$=£¨-1£¬1£©ÔÚ$\overrightarrow{b}$=£¨3£¬4£©·½ÏòÉϵÄͶӰΪ$\frac{1}{5}$
¢ÛÈô¡÷ABCÖУ¬a=5£¬b=8£¬c=7£¬Ôò$\overrightarrow{BC}•\overrightarrow{CA}$=20£»
¢ÜÈô·ÇÁãÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{b}$|£¬Ôò|2$\overrightarrow{b}$|£¾|$\overrightarrow{a}$+2$\overrightarrow{b}$|£®
ÆäÖÐÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

·ÖÎö ¢Ù¸ù¾Ý|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|µÃ³ö$\overrightarrow{a}$¡Î$\overrightarrow{b}$£»
¢Ú¸ù¾ÝͶӰµÄ¶¨Ò弯Ëã³ö$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰ£»
¢Û¸ù¾ÝÓàÏÒ¶¨ÀíºÍÊýÁ¿»ýµÄ¶¨Ò弯Ëã$\overrightarrow{BC}•\overrightarrow{CA}$µÄÖµ£»
¢Ü¸ù¾Ý|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{b}$|µÃ³ö|2$\overrightarrow{b}$|¡Ý|$\overrightarrow{a}$+2$\overrightarrow{b}$|£®

½â´ð ½â£º¶ÔÓÚ¢Ù£¬|$\overrightarrow{a}$•$\overrightarrow{b}$|=||$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos¦È|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|£¬¡àcos¦È=¡À1£¬¡à$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬¡à¢ÙÕýÈ·
¶ÔÓÚ¢Ú£¬$\overrightarrow{a}$=£¨-1£¬1£©ÔÚ$\overrightarrow{b}$=£¨3£¬4£©·½ÏòÉϵÄͶӰΪ£º|$\overrightarrow{a}$|cos¦È=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$=$\frac{-1¡Á3+1¡Á4}{\sqrt{{3}^{2}{+4}^{2}}}$=$\frac{1}{5}$£¬¡à¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬¡÷ABCÖУ¬a=5£¬b=8£¬c=7£¬Ôò
$\overrightarrow{BC}•\overrightarrow{CA}$=a¡Ábcos£¼$\overrightarrow{BC}$£¬$\overrightarrow{CA}$£¾=5¡Á8¡Á£¨-$\frac{{5}^{2}{+8}^{2}{-7}^{2}}{2¡Á5¡Á8}$£©=-20£¬¡à¢Û´íÎó£»
¶ÔÓڢܣ¬Èô·ÇÁãÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{b}$|£¬Ôò
|$\overrightarrow{a}$+2$\overrightarrow{b}$|¡Ü|$\overrightarrow{a}$+$\overrightarrow{b}$|+|$\overrightarrow{b}$|=2|$\overrightarrow{b}$|=|2$\overrightarrow{b}$|
¡à|2$\overrightarrow{b}$|¡Ý|$\overrightarrow{a}$+2$\overrightarrow{b}$|£¬¡à¢Ü´íÎó£»
×ÛÉÏ£¬ÕýÈ·µÄÃüÌâÊÇ¢Ù¢Ú£¬¹²2¸öÊý£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÓëÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¶¨ÒåÔÚRÉϵĿɵ¼º¯Êýf£¨x£©£¬f¡ä£¨x£©ÊÇÆäµ¼º¯Êý£¬ÔòÏÂÁнáÂÛÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®Èôf£¨x£©ÊÇżº¯Êý£¬Ôòf¡ä£¨x£©±ØÊÇÆæº¯ÊýB£®Èôf£¨x£©ÊÇÆæº¯Êý£¬Ôòf¡ä£¨x£©±ØÊÇżº¯Êý
C£®Èôf¡ä£¨x£©ÊÇżº¯Êý£¬Ôòf£¨x£©±ØÊÇÆæº¯ÊýD£®Èôf¡ä£¨x£©ÊÇÆæº¯Êý£¬Ôòf£¨x£©±ØÊÇżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªËæ»ú±äÁ¿X·þ´Ó¶þÏî·Ö²¼X¡«B£¨6£¬$\frac{2}{3}$£©£¬ÔòP£¨X=2£©µÄֵΪ$\frac{20}{243}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èôm=2x2+2x+1£¬n=£¨x+1£©2£¬Ôòm£¬nµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®m£¾nB£®m¡ÝnC£®m£¼nD£®m¡Ün

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÆ½ÃæÉÏÈýµãA£¬B£¬C£¬$\overrightarrow{BC}$=£¨2-k£¬3£©£¬$\overrightarrow{AC}$=£¨2£¬4£©£®
£¨1£©ÈôÈýµãA£¬B£¬C²»Äܹ¹³ÉÈý½ÇÐΣ¬ÇóʵÊýkÓ¦Âú×ãµÄÌõ¼þ£»
£¨2£©Èô¡÷ABCΪֱ½ÇÈý½ÇÐΣ¬ÆäÖнÇBÊÇÖ±½Ç£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®£¨ÔÚ¸´Êý·¶Î§ÄÚ£©½â·½³Ì|z|+£¨z+$\overline{z}$£©i=$\frac{3-i}{2+i}$£¬Çó½â¸´Êýz£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼×¡¢ÒÒÁ½Î»Ñ§Éú²Î¼ÓÈ«¹úÊýѧÁªÈüÅàѵ£®ÔÚÅàѵÆÚ¼ä£¬ËûÃDzμӵÄ5´Î²âÊԳɼ¨¼Ç¼ÈçÏ£º
¼×£º82   82   79   95   87
ÒÒ£º95   75   80   90   85
£¨¢ñ£©´Ó¼×¡¢ÒÒÁ½È˵ÄÕâ5´Î³É¼¨Öи÷Ëæ»ú³éȡһ¸ö£¬Çó¼×µÄ³É¼¨±ÈÒҵijɼ¨¸ßµÄ¸ÅÂÊ£»
£¨¢ò£©ÏÖÒª´Ó¼×¡¢ÒÒÁ½Î»Í¬Ñ§ÖÐÑ¡ÅÉÒ»È˲μÓÕýʽ±ÈÈü£¬´Óͳ¼ÆÑ§µÄ½Ç¶È¿¼ÂÇ£¬ÄãÈÏΪѡÅÉÄÄλͬѧ²Î¼ÓºÏÊÊ£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÇóÖµ£º$\frac{{2sin{{47}¡ã}-\sqrt{3}sin{{17}¡ã}}}{{cos{{17}¡ã}}}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®É輯ºÏA={a2+8|a¡ÊN}£¬B={b2+29|b¡ÊN}£¬ÈôA¡ÉB=P£¬ÔòPÖÐÔªËØ¸öÊýΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®ÖÁÉÙ3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸