精英家教网 > 高中数学 > 题目详情

【题目】对于给定的正整数k,若数列{an}满足

=2kan对任意正整数n(n> k) 总成立,则称数列{an} 是“P(k)数列”.

(1)证明:等差数列{an}是“P(3)数列”;

若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)利用等差数列性质得,即得 ,再根据定义即可判断;(2)先根据定义得 ,再将条件集中消元: ,即得,最后验证起始项也满足即可.

试题解析:证明:(1)因为是等差数列,设其公差为,则

从而,当时,

所以

因此等差数列是“数列”.

(2)数列既是“数列”,又是“数列”,因此,

时, ,①

时, .②

由①知, ,③

,④

将③④代入②,得,其中

所以是等差数列,设其公差为.

在①中,取,则,所以

在①中,取,则,所以

所以数列是等差数列.

点睛:证明为等差数列的方法:用定义证明: 为常数);用等差中项证明: 通项法: 为关于的一次函数;④前项和法:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】张老师给学生出了一道题,“试写一个程序框图,计算S=1+ + + + ”.发现同学们有如下几种做法,其中有一个是错误的,这个错误的做法是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正数数列{an}的前n项和为Sn , 点P(an , Sn)在函数f(x)= x2+ x上,已知b1=1,3bn﹣2bn1=0(n≥2,n∈N*),
(1)求数列{an}的通项公式;
(2)若cn=anbn , 求数列{cn}的前n项和Tn
(3)是否存在整数m,M,使得m<Tn<M对任意正整数n恒成立,且M﹣m=9,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.
(Ⅰ)在所给图中画出平面ABD1与平面B1EC的交线(不必说明理由);
(Ⅱ)证明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1与平面B1EC所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC= AA1 , D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=|2x﹣1|,定义f1(x)=x,fn+1(x)=f(fn(x)),已知函数g(x)=fm(x)﹣x有8个零点,则m的值为(
A.8
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数)在点处的切线经过点

(Ⅰ)讨论函数的单调性;

(Ⅱ)若,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=1,an+1= an+ (n∈N*).
(1)求最小的正实数M,使得对任意的n∈N* , 恒有0<an≤M.
(2)求证:对任意的n∈N* , 恒有 ≤an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: =(2sinx,2cosx), =(cosx,﹣cosx),f(x)=
(1)若 共线,且x∈( ,π),求x的值;
(2)求函数f(x)的周期;
(3)若对任意x∈[0, ]不等式m﹣2≤f(x)≤m+ 恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案