精英家教网 > 高中数学 > 题目详情
甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结束相互独立,第1局甲当裁判.
(Ⅰ)求第4局甲当裁判的概率;
(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.
(Ⅰ)(Ⅱ)
(Ⅰ)记表示事件“第2局结果为甲胜”,
表示事件“第3局甲参加比赛时,结果为甲负”,
A表示事件“第4局甲当裁判”.
.                              3分
.           6分
(Ⅱ)X的可能取值为0,1,2.
表示事件“第3局乙和丙比赛时,结果为乙胜丙”,
表示事件“第1局结果为乙胜丙”,
表示事件“第2局乙和甲比赛时,结果为乙胜甲”,
表示事件“第3局乙参加比赛时,结果为乙负”.


,    10分
.    12分
(1)利用独立事件的概率公式求解,关键是明确A表示事件“第4局甲当裁判”和表示事件“第2局结果为甲胜”, 表示事件“第3局甲参加比赛时,结果为甲负”之间个独立关系;(2)明确X的可能取值,然后利用独立事件和互斥事件的公式逐一求解.因当x=1时较为复杂,故采用对立事件概率问题进行求解,即
【考点定位】本题考查独立事件和互斥事件的概率问题已经离散型数学期望,考查分析问题和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在一个盒子里装有4枝圆珠笔,其中3枝一等品,1枝三等品
(1)从盒子里任取2枝恰有1枝三等品的概率多大?
(2)从盒子里第一次任取1枝(不放回),第二次任取1枝;第一次取的是三等品,第二次取的是一等品的概率有多大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某地区为了了解70~80岁老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查.下表是这50位老人日睡眠时间的频率分布表:
序号i
分组(睡眠时间)
组中值(Gi)
频数(人数)
频率(Fi)
1
[4,5)
4.5
6
0.12
2
[5,6)
5.5
10
0.20
3
[6,7)
6.5
20
0.40
4
[7,8)
7.5
10
0.20
5
[8,9]
8.5
4
0.08
在上述统计数据的分析中,一部分计算见程序框图,则输出的S的值是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;
(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

先后2次抛掷一枚骰子,将得到的点数分别记为a, b.
(1)求直线ax+by+5=0与圆 相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形(含等边三角形)的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一次购物抽奖活动中,假设某6张券中有一等奖 券1张,可获价值50元的奖品;有二等奖券1张,每张可获价值20元的奖品;其余4张没有奖.某顾客从此6张中任抽1张,求:
(1)该顾客中奖的概率;
(2)该顾客参加此活动可能获得的奖品价值的期望值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中有红、黄、白三种颜色的球各一个,从中每次取一只,有放回的抽取三次,
求:(1)3只球颜色全相同的概率;
(2)3只球颜色不全相同的概率;
(3)3只球颜色全不相同的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了考察某种中药预防流感效果,抽样调查40人,得到如下数据:服用中药的有20人,其中患流感的有2人,而未服用中药的20人中,患流感的有8人。
(1)根据以上数据建立列联表;
(2)能否在犯错误不超过0.05的前提下认为该药物有效?
参考

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
  (

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某5个同学进行投篮比赛,已知每个同学投篮命中率为,每个同学投篮2次,且投篮之间和同学之间都没有影响.现规定:投中两个得100分,投中一个得50分,一个未中得0分,记为5个同学的得分总和,则的数学期望为(  )
A.400B.200C.100D.80

查看答案和解析>>

同步练习册答案