精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=$\left\{{\begin{array}{l}{{x^3}(0≤x<5)}\\{f(x-5)(x≥5)}\end{array}}$,那么f(2015)=(  )
A.27B.9C.0D.1

分析 由已知中函数f(x)=$\left\{{\begin{array}{l}{{x^3}(0≤x<5)}\\{f(x-5)(x≥5)}\end{array}}$,将x=2015代入可得f(2015)的值.

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{{x^3}(0≤x<5)}\\{f(x-5)(x≥5)}\end{array}}$,
∴f(2015)=f(2010)=f(2005)=…=f(10)=f(5)=f(0)=0,
故选:C

点评 本题考查的知识点是函数的值,分段函数,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A、B、C的对边分别是a,b,c,a=$\sqrt{2}$,b=$\sqrt{3}$,B=60°,则A=(  )
A.45°B.60°C.120°或60°D.135°或45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,在梯形ABCE中,AB∥CE,D是CE的中点,BC∥AD,AB=BC=2,∠BAD=60°,沿AD把梯形折成如图2所示的四棱锥E-ABCD.
(1)求证:AD⊥EB;
(2)当平面EAD⊥平面ABCD时,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a是实数,z=$\frac{a-i}{1-i}$是纯虚数,则$\overrightarrow{z}$=i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx(a∈R.)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设函数h(x)=x2-mx+4,当a=2时,若?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}是递增数列,且对于任意的n∈N+,an=2n2+λn+3恒成立,则实数λ的取值范围是λ>-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)求直线$ρ=\frac{1}{acosθ+bsinθ}$与圆ρ=2ccosθ(c>0)相切的条件;
(2)求曲线θ=0,$θ=\frac{π}{3}({ρ≥0})$和ρ=4所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求证:$\frac{1-2sinαcosα}{{{{cos}^2}α-{{sin}^2}α}}=tan(\frac{π}{4}-α)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,则该长方体的最大体积为(  )
A.2m3B.3m3C.4m3D.5m3

查看答案和解析>>

同步练习册答案