精英家教网 > 高中数学 > 题目详情
17.已知a是实数,z=$\frac{a-i}{1-i}$是纯虚数,则$\overrightarrow{z}$=i.

分析 通过化简并利用“纯虚数即实部为0”可知a=-1,进而可得结论.

解答 解:∵z=$\frac{a-i}{1-i}$=$\frac{a+1+(a-1)i}{2}$是纯虚数,
∴a+1=0,即a=-1,
∴z=-i,$\overrightarrow{z}$=i,
故答案为:i.

点评 本题考查复数代数形式的乘除运算,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a,b,c分别是三个内角A,B,C的对边,已知a2+bc=c2+b2
(Ⅰ)求A的值;
(Ⅱ)若b=1,△ABC的面积为$\sqrt{3}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若sin($\frac{π}{5}$+θ)=$\frac{4}{5}$,则cos($\frac{2π}{5}$+2θ)=(  )
A.$\frac{7}{25}$B.$-\frac{7}{25}$C.$\frac{24}{25}$D.$-\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,3),$\overrightarrow{c}$=(-4,-7),若向量(λ$\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,则λ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=|x-4|+|x-a|(a<4)
(1)若f(x)的最小值为3,求a的值;
(2)当a=1时,若g(x)=$\frac{1}{f(x)+m}$的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a$=(1,2),|$\overrightarrow b$|=$\sqrt{5}$,$\overrightarrow a$⊥$\overrightarrow b$,则$\overrightarrow b$可以为(  )
A.(2,-1)B.(1,-2)C.(4,2)D.(4,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=$\left\{{\begin{array}{l}{{x^3}(0≤x<5)}\\{f(x-5)(x≥5)}\end{array}}$,那么f(2015)=(  )
A.27B.9C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$y=\frac{x}{e^x}$在[0,2]上的最大值为$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用边长为48cm的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒.求所做的铁盒容积最大时,在四角截去的正方形的边长.

查看答案和解析>>

同步练习册答案