| A. | 2001 | B. | 2002 | C. | 4002 | D. | 4004 |
分析 由已知中f(x+y)=f(x)•f(y),且f(1)=2,令y=1,则f(x+1)=2f(x),即$\frac{f(x+1)}{f(x)}=2$,进而得到答案.
解答 解:∵f(x+y)=f(x)•f(y),且f(1)=2,
令y=1,则f(x+1)=2f(x),
即$\frac{f(x+1)}{f(x)}=2$,
∴$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+…+$\frac{f(2002)}{f(2001)}$=2×2001=4002,
故选:C
点评 本题考查的知识点是抽象函数及其应用,其中根据已知得到$\frac{f(x+1)}{f(x)}=2$,是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com