分析 由题意可得$\left\{\begin{array}{l}{a>0}\\{\frac{a}{1}≤-1+3a}\end{array}\right.$,由此求得a的范围.
解答 解:若f(x)=$\left\{\begin{array}{l}\frac{a}{x},x≥1\\-x+3a,x<1\end{array}$是R上的单调减函数,得则$\left\{\begin{array}{l}{a>0}\\{\frac{a}{1}≤-1+3a}\end{array}\right.$,求a≥$\frac{1}{2}$,
故答案为:[$\frac{1}{2}$,+∞).
点评 本题主要考查函数的单调性的性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{7}$ | B. | $\frac{7}{5}$ | C. | $\frac{1}{7}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 焦点 | B. | 准线 | C. | 焦距 | D. | 离心率 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com