精英家教网 > 高中数学 > 题目详情
(12分)已知椭圆C:,两个焦点分别为,斜率为k的直线过右焦点且与椭圆交于A、B两点,设与y轴交点为P,线段的中点恰为B。
(1)若,求椭圆C的离心率的取值范围。
(2)若,A、B到右准线距离之和为,求椭圆C的方程。
(1)
(2)椭圆方程为
(1)设右焦点
的中点,,B在椭圆上,


(2),则
椭圆方程为
直线方程为,右准线为

在椭圆上,
,即
所求椭圆方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)已知m>1,直线,椭圆分别为椭圆的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,的重心分别为.若原点在以线段为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆两焦点分别为 ,是椭圆在第一象限弧上的一点,并满足,过点作倾斜角互补的两条直线 分别交椭圆于A、B两点.
(1)求点坐标;
(2)证明:直线的斜率为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的左、右顶点分别为,曲线是以椭圆中心为顶点,为焦点的抛物线.
(1)求曲线的方程;
(2)直线与曲线交于不同的两点.当时,求直线 的倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,椭圆C:的焦距为2,离心率为
(1)求椭圆C的方程
(2)设是过原点的直线,是与垂直相交于P点且与椭圆相交于A、B两点的直线,,是否存在上述直线使成立?若存在,求出直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知焦点在X轴的椭圆,焦点为,焦距为,(1)求椭圆方程,(2)若是椭圆上一点,且,求的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆中心在原点,一个焦点为,且长轴是短轴长的2倍,则该椭圆的标准方程是              

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的两个焦点为,点在椭圆上,且.
(1)求椭圆的方程;
(2)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的焦距等于2,则m的值为(  )
A.10B.7C.10或4D.7或5

查看答案和解析>>

同步练习册答案