精英家教网 > 高中数学 > 题目详情
已知圆C的圆心坐标为(2,-3),一条直径的两个端点分别在x轴和y轴上,则圆C的标准方程为
(x-2)2+(y+3)2=13
(x-2)2+(y+3)2=13
分析:直径的两个端点分别A(a,0)B(0,b),圆心C(2,-3)为AB的中点,利用中点坐标公式求出a,b后,再利用两点距离公式求出半径,即可得到圆的标准方程.
解答:解:设直径的两个端点分别A(a,0)B(0,b).圆心C为点(2,-3),
由中点坐标公式得,a=4,b=-6,
∴r=
1
2
|AB|=
1
2
42+62
=
13

则此圆的方程是 (x-2)2+(y+3)2=13.
故答案为:(x-2)2+(y+3)2=13.
点评:本题考查圆的方程求解,中点坐标公式的应用,确定圆心、半径即能求出圆的标准方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知矩阵M=
0
1
1
0
N=
0
1
-1
0
.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到的曲线F,求曲线F的方程.
(2)在极坐标系中,已知圆C的圆心坐标为C (2,
π
3
),半径R=
5
,求圆C的极坐标方程.
(3)已知a,b为正数,求证:
1
a
+
4
b
9
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆C的圆心坐标为(1,-1),且过点M(2,-1).
(1)求圆C的标准方程;
(2)过点N(-1,-2)且斜率为1的直线l与圆C相交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心坐标为C(2,-1),且被直线x-y-1=0所截得弦长是2
2

(1)求圆的方程;
(2)已知A为直线l:x-y+1=0上一动点,过点A的直线与圆相切于点B,求切线段|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,已知圆C的圆心坐标为C(2,
π
3
),半径R=
5
,求圆C的极坐标方程.

查看答案和解析>>

同步练习册答案