精英家教网 > 高中数学 > 题目详情
甲乙两名学生通过某种听力测试的概率分别为,两人同时参加测试,其中有且只有一人通过的概率为(   )
A.   B.   C.D.
C

试题分析:依题意求其中有且只有一人通过的概率分为两种情况①甲通过乙没通过的概率为.②甲没通过乙通过的概率为.故有且只有一人通过的概率为.故选C.计算概率把握两个基本定理.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某牛奶厂要将一批牛奶用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且运费由厂商承担.若厂商恰能在约定日期(×月×日)将牛奶送到,则城市乙的销售商一次性支付给牛奶厂20万元;若在约定日期前送到,每提前一天销售商将多支付给牛奶厂1万元;若在约定日期后送到,每迟到一天销售商将少支付给牛奶厂1万元.为保证牛奶新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送牛奶,已知下表内的信息:
统计信息
汽车行驶路线
在不堵车的情况下到达城市乙所需时间(天)
在堵车的情况下到达城市乙所需时间(天)
堵车的概率
运费(万元)
公路1
2
3

1.6
公路2
1
4

0.8
(I)记汽车选择公路1运送牛奶时牛奶厂获得的毛收入为(单位:万元),求的分布列和数学期望
(II)如果你是牛奶厂的决策者,你选择哪条公路运送牛奶有可能让牛奶厂获得的毛收入更多?
(注:毛收入=销售商支付给牛奶厂的费用-运费)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4。
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求+2的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
日最高气温t (单位:℃)
t22℃
22℃< t28℃
28℃< t  32℃

天数
6
12


由于工作疏忽,统计表被墨水污染,数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
(Ⅰ) 若把频率看作概率,求的值;
(Ⅱ) 把日最高气温高于32℃称为本地区的 “高温天气”,根据已知条件完成下面列联表,并据此你是否有95%的把握认为本地区的“高温天气”与西瓜“旺销”有关?说明理由.
 
高温天气
非高温天气
合计
旺销
1
 
 
不旺销
 
6
 
合计
 
 
 
附:  

0.10
0.050
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:

(Ⅰ)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少?
(Ⅱ)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
求这两种金额之和不低于20元的概率;
②若用X表示这两种金额之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是(  )
(A)      (B)      (C)      (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连掷两次骰子得到的点数分别为mn,记向量a=(mn)与向量b=(1,-1)的夹角为θ.则θ的概率是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连续向一目标射击,直至击中为止,已知一次射击命中目标的概率为则射击次数为3的概率为   (  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

A、B两个试验方案在某科学试验中成功的概率相同,已知A、B两个方案至少一个方案试验成功的概率是0.36.
(1)求两个方案均获成功的概率;
(2)设试验成功的方案的个数为随机变量ξ,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案