精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB^平面PAD,△PAD是正三角形,  
DC//AB,DA=DC=2AB.
(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;
(2)求证:平面PBC^平面PDC.

(1)详见解析;(2)详见解析.

解析试题分析: (1)由题中所给条件,不难联想到要运用线面平行的性质定理将线面平行转化为线线平行,即由所以,再结合平面几何的知识易得:结合比例线段关系即可求得;(2)中要证明面面垂直,根据面面垂直的判定定理可转化为证明线面垂直,由题中的数量关系不难发现取的中点,连结,运用解三角形的知识算出,问题即可得证.
试题解析: (1)因为所以
所以.                       3分
因为,所以.
所以.                                   6分
(2)取的中点,连结
因为是正三角形,,所以
因为的中点,所以.              8分
因为,所以
因为,所以
,在等腰直角三角形中,
中,
在直角梯形中,
因为,点F为PC的中点,所以
中,.                    
中,由,可知,所以
12分
,所以
,所以平面   14分
考点:1.线面平行的性质定理;2.面面垂直的判定定理;3.平面几何中的计算

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱垂直底面,
(1)求证:
(2)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为矩形,平面中点,上一点.
(1)求证:平面
(2)当为何值时,二面角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面分别为中点,
(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为正方形,平面,已知为线段的中点.
(1)求证:平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN平面ABCD,E,F分别为MA,DC的中点,求证:

(1)EF//平面MNCB;
(2)平面MAC平面BND.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.

(1)求证:AF∥平面BDE;
(2)求证:CF⊥平面BDE.

查看答案和解析>>

同步练习册答案