如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB^平面PAD,△PAD是正三角形,
DC//AB,DA=DC=2AB.
(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;
(2)求证:平面PBC^平面PDC.
(1)详见解析;(2)详见解析.
解析试题分析: (1)由题中所给条件,不难联想到要运用线面平行的性质定理将线面平行转化为线线平行,即由所以,再结合平面几何的知识易得:结合比例线段关系即可求得;(2)中要证明面面垂直,根据面面垂直的判定定理可转化为证明线面垂直,由题中的数量关系不难发现取的中点,连结,运用解三角形的知识算出,问题即可得证.
试题解析: (1)因为所以,
所以. 3分
因为,所以.
所以. 6分
(2)取的中点,连结.
因为是正三角形,,所以.
因为为的中点,所以. 8分
因为,所以.
因为,所以.
设,在等腰直角三角形中,.
在中,.
在直角梯形中,.
因为,点F为PC的中点,所以.
在中,.
在中,由,可知,所以.
12分
由,所以.
又,所以平面 14分
考点:1.线面平行的性质定理;2.面面垂直的判定定理;3.平面几何中的计算
科目:高中数学 来源: 题型:解答题
(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,底面是正方形,侧面底面,,分别为,中点,.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN平面ABCD,E,F分别为MA,DC的中点,求证:
(1)EF//平面MNCB;
(2)平面MAC平面BND.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.
(1)求证:AF∥平面BDE;
(2)求证:CF⊥平面BDE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com