如图,在四棱锥中,底面为正方形,平面,已知,为线段的中点.
(1)求证:平面;
(2)求二面角的平面角的余弦值.
证明:(1)见解析;(2)二面角的平面角的余弦值为.
解析试题分析:证明:(1)注意做辅助线,连结和交于,连结,
根据为中点,为中点,得到
, 即证得平面;
(2)应用已知条件,研究得到,
平面,,创造建立空间直角坐标系的条件,通过
以为原点,以为轴建立如图所示的坐标系,
应用“向量法”解题;
解答本题的关键是确定“垂直关系”,这也是难点所在,平时学习中,应特别注意转化意识的培养,能从“非规范几何体”,探索得到建立空间直角坐标系的条件.
试题解析:证明:(1)连结和交于,连结, 1分
为正方形,为中点,为中点,
, 3分
平面,平面
平面. 4分
(2)平面,平面,,
为正方形,,
平面,
平面,
平面, 6分
以为原点,以为轴建立如图所示的坐标系,
则,,,
科目:高中数学 来源: 题型:解答题
如图,长方体中,,G是上的动点。
(l)求证:平面ADG;
(2)判断与平面ADG的位置关系,并给出证明;
(3)若G是的中点,求二面角G-AD-C的大小;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB^平面PAD,△PAD是正三角形,
DC//AB,DA=DC=2AB.
(1)若点E为棱PA上一点,且OE∥平面PBC,求的值;
(2)求证:平面PBC^平面PDC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面内,,AB=2BC=2,P为平面外一个动点,且PC=,
(1)问当PA的长为多少时,
(2)当的面积取得最大值时,求直线PC与平面PAB所成角的正弦值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,.
(1)求证:OD//平面VBC;
(2)求证:AC⊥平面VOD;
(3)求棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com