精英家教网 > 高中数学 > 题目详情
12.等差数列{an}中,a1+a4+a7=33,a3+a6+a9=21,则数列{an}前9项的和S9等于81.

分析 根据等差数列项的性质与前n项和公式,进行解答即可.

解答 解:等差数列{an}中,a1+a4+a7=33,a3+a6+a9=21,
∴3a4=33,3a6=21;
∴a4=11,a6=7;
数列{an}前9项的和:
${S_9}=\frac{{9({{a_1}+{a_9}})}}{2}=\frac{{9({a_4}+{a_6})}}{2}=81$.
故答案为:81.

点评 本题考查了等差数列项的性质与前n项和公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某用水量较大的企业为积极响应政府号召的“节约用水,我们共同的责任”的倡议,对生产设备进行技术改造,下表提供了该企业节约用水技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产用水y(吨)的几组对照数据:
x1234
y0.40.91.11.6
(1)若x,y之间是线性相关,请根据表中提供的数据,求y关于x的线性回归方程y=bx+a;
(2)已知该厂技术改造前100吨甲产品的生产用水为120吨,试根据(1)中求出的线性回归方程,预测技术改造后生产100吨甲产品的用水量比技术改造前减少了多少吨?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{1}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2ln(x+1)+$\frac{1}{x(x+1)}-1$;
(Ⅰ)求f(x)在区间[1,+∞)上的最小值;
(Ⅱ)证明:当n≥2时,对任意的正整数n,都有ln1+ln2+…+lnn$>\frac{(n-1)^{2}}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax3+bx2+cx,其导函数为f′(x)的部分值如表所示:
x-3-201348
f'(x)-24-10680-10-90
根据表中数据,回答下列问题:
(Ⅰ)实数c的值为6;当x=3时,f(x)取得极大值(将答案填写在横线上).
(Ⅱ)求实数a,b的值.
(Ⅲ)若f(x)在(m,m+2)上单调递减,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,过右焦点F2的直线l与C相交于P,Q两点,若△F1PQ的周长为短轴长的2$\sqrt{2}$倍,抛物线y2=2$\sqrt{2}$x的焦点F满足$\overrightarrow{{F}_{1}F}$=3$\overrightarrow{F{F}_{2}}$.
(I) 求椭圆C的方程;
(Ⅱ)若$\overrightarrow{P{F}_{2}}$=3$\overrightarrow{{F}_{2}Q}$,求直线l的方程;
(Ⅲ)若直线l的倾斜角α∈[$\frac{π}{6}$,$\frac{π}{2}$],求△F1PQ的内切圆的半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+1与g(x)=x+m在[0,3]上是“关联函数”,则m的取值范围为(  )
A.(-3,+∞)B.(-3,-2]C.[-3,0]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知角θ的终边过点P(-12,5),则cosθ+sinθ=(  )
A.$-\frac{5}{12}$B.$-\frac{7}{13}$C.$\frac{12}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点A(1,3),B(4,1),则向量$\overrightarrow{AB}$的模为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知平面向量$\vec a$,$\vec b$满足$\vec a$•($\vec a$+$\vec b$)=5,且|${\vec a}$|=2,|${\vec b}$|=1,则$\vec a$与$\vec b$夹角的大小为60°.

查看答案和解析>>

同步练习册答案