精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=ax3+bx2+cx,其导函数为f′(x)的部分值如表所示:
x-3-201348
f'(x)-24-10680-10-90
根据表中数据,回答下列问题:
(Ⅰ)实数c的值为6;当x=3时,f(x)取得极大值(将答案填写在横线上).
(Ⅱ)求实数a,b的值.
(Ⅲ)若f(x)在(m,m+2)上单调递减,求m的取值范围.

分析 (Ⅰ)由极值的定义,通过表格可求解;
(Ⅱ)在表格中取两组数据代入解析式即可;
(Ⅲ)利用导数求出f(x)的单调减区间D,依据(m,m+2)⊆D即可.

解答 解:(Ⅰ)6,3.------------------------------------------------------------------(4分)
(Ⅱ)解:f'(x)=3ax2+2bx+c,--------------------------------------------------------------(5分)
由已知表格可得$\left\{{\begin{array}{l}{f'(1)=8}\\{f'(3)=0}\end{array}}\right.$ 解得 $\left\{{\begin{array}{l}{a=-\frac{2}{3}}\\{b=2}\end{array}}\right.$---------------------------------------------(7分)
(Ⅲ)解:由(Ⅱ)可得f'(x)=-2x2+4x+6=-2(x-3)(x+1),-----------------------(8分)
由f'(x)<0可得x∈(-∞,-1)∪(3,+∞),------------------------------------------------(9分)
因为f(x)在(m,m+2)上单调递减,
所以仅需m+2≤-1或者m≥3,------------------------------------------------------(11分)
所以m的取值范为m≥3或m≤-3.-----------------------------------------------------(12分)

点评 本题考查了函数的定义及利用导数求单调区间,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程为:ρsinθ+ρcosθ=2,曲线C的极坐标方程为:ρcos2θ=asinθ(a>0),曲线C与直线l的交点为M,N.
(Ⅰ)当a=1时,求直线l和曲线C相交的弦长|MN|;
(Ⅱ)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,求△OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某厂家拟在暑期举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量t万件满足t=5-$\frac{2}{x}$(其中0≤x≤a,a为正常数)现拟定生产量与销售量相等,已知生产该产品t万件还需投入成本(10+2t)万元(不含促销费用),产品的销售价格定为(4+$\frac{20}{t}$)万元/万件.
(1)将该产品的利润y万元表示为促销费用x万元的函数
(2)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在原点,离心率为$\frac{1}{2}$,且与抛物线y2=4x有共同的焦点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx+m与椭圆C相切于N点,且与直线x=4交于M点,试探究,在坐标平面内是否存在点P,使得以MN为直径的圆恒过点P?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面直角坐标系xoy中,直线l的参数方程是$\left\{\begin{array}{l}x=\sqrt{3}+tcos\frac{π}{4}\\ y=tsin\frac{π}{4}\end{array}$(t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是$\frac{{{ρ^2}{{cos}^2}θ}}{4}$+ρ2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x<0\\ cosx,0≤x≤\frac{π}{2}\end{array}$的图象与x轴围成的封闭图形的面积为(  )
A.$\frac{π}{4}$+1B.$\frac{5π}{4}$C.$\frac{5}{4}$D.π+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等差数列{an}中,a1+a4+a7=33,a3+a6+a9=21,则数列{an}前9项的和S9等于81.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,最小正周期为π且图象关于原点对称的函数是(  )
A.y=sin2x+cos2xB.y=sinx+cosxC.y=cos(2x+$\frac{π}{2}$)D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,已知四边形ABFD为直角梯形,AB∥DF,∠ADF=$\frac{π}{2}$,BC⊥DF,△AED为等边三角形,AD=$\frac{{10\sqrt{3}}}{3}$,DC=$\frac{{2\sqrt{7}}}{3}$,如图2,将△AED,△BCF分别沿AD,BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,连接EF,DF,设G为AE上任意一点.

(1)证明:DG∥平面BCF;
(2)若GC=$\frac{16}{3}$,求$\frac{EG}{GA}$的值.

查看答案和解析>>

同步练习册答案