| x | -3 | -2 | 0 | 1 | 3 | 4 | 8 |
| f'(x) | -24 | -10 | 6 | 8 | 0 | -10 | -90 |
分析 (Ⅰ)由极值的定义,通过表格可求解;
(Ⅱ)在表格中取两组数据代入解析式即可;
(Ⅲ)利用导数求出f(x)的单调减区间D,依据(m,m+2)⊆D即可.
解答 解:(Ⅰ)6,3.------------------------------------------------------------------(4分)
(Ⅱ)解:f'(x)=3ax2+2bx+c,--------------------------------------------------------------(5分)
由已知表格可得$\left\{{\begin{array}{l}{f'(1)=8}\\{f'(3)=0}\end{array}}\right.$ 解得 $\left\{{\begin{array}{l}{a=-\frac{2}{3}}\\{b=2}\end{array}}\right.$---------------------------------------------(7分)
(Ⅲ)解:由(Ⅱ)可得f'(x)=-2x2+4x+6=-2(x-3)(x+1),-----------------------(8分)
由f'(x)<0可得x∈(-∞,-1)∪(3,+∞),------------------------------------------------(9分)
因为f(x)在(m,m+2)上单调递减,
所以仅需m+2≤-1或者m≥3,------------------------------------------------------(11分)
所以m的取值范为m≥3或m≤-3.-----------------------------------------------------(12分)
点评 本题考查了函数的定义及利用导数求单调区间,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$+1 | B. | $\frac{5π}{4}$ | C. | $\frac{5}{4}$ | D. | π+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin2x+cos2x | B. | y=sinx+cosx | C. | y=cos(2x+$\frac{π}{2}$) | D. | y=sin(2x+$\frac{π}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com