精英家教网 > 高中数学 > 题目详情
4.已知an=2n,f(n)=$\frac{{{a_1}+1}}{a_1}$×$\frac{{{a_2}+1}}{a_2}$×…×$\frac{{{a_n}+1}}{a_n}$,g(n)=$\sqrt{n+1}$(n∈N*).
(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;
(2)猜想f(n)与g(n)的大小关系,并给出证明.

分析 (1)由an=2n,可得:f(n)=$\frac{3}{2}$×$\frac{5}{4}$×…×$\frac{2n+1}{2n}$,g(n)=$\sqrt{n+1}$(n∈N*).当n=1时,f(1)=$\frac{3}{2}$,g(1)=$\sqrt{2}$,因此f(1)>g(1);同理可得:f(2)>g(2);f(3)>g(3).
(2)猜想f(n)>g(n).利用数学归纳法证明即可得出.

解答 解:(1)∵an=2n,
∴f(n)=$\frac{{{a_1}+1}}{a_1}$×$\frac{{{a_2}+1}}{a_2}$×…×$\frac{{{a_n}+1}}{a_n}$=$\frac{3}{2}$×$\frac{5}{4}$×…×$\frac{2n+1}{2n}$,
g(n)=$\sqrt{n+1}$(n∈N*).
∴当n=1时,f(1)=$\frac{3}{2}$,g(1)=$\sqrt{2}$,因此f(1)>g(1);
同理可得:当n=2时,f(2)=$\frac{15}{8}$,g(2)=$\sqrt{3}$,因此f(2)>g(2);f(3)>g(3).
(2)猜想f(n)>g(n).
下面利用数学归纳法证明:
①当n=1时,成立;
②假设当n=k∈N*时,f(k)>g(k).
则当n=k+1时,f(k+1)=f(k)×$\frac{2k+3}{2k+2}$>$\frac{2k+3}{2k+2}$×$\sqrt{k+1}$,
下面证明:$\frac{2k+3}{2k+2}$×$\sqrt{k+1}$$>\sqrt{k+2}$,
∵4k2+12k+9>4k2+12k+8,
∴(2k+3)2>4(k+1)(k+2),
∴$\frac{(2k+3)^{2}}{4(k+1)^{2}}$>$\frac{k+2}{k+1}$,
∴$\frac{(2k+3)^{2}}{2k+2}×\sqrt{k+1}$$>\sqrt{k+2}$,
因此当n=k+1时,f(k+1)>g(k+1)成立,
综上可得:命题对于?n∈N*,f(n)>g(n).

点评 本题考查了归纳猜想、数学归纳法、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设等比数列{an}的前n项和为Sn,已知a1=2,且4S1,3S2,2S3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=|2n-5|•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合M={1,2,3,…,n,n+1}(n≥2,n∈N),M1,M2,M3,…,MS(k)是M的k+1元子集(k∈N,k≤n)
(1)若n=9,k=1,且满足Mi(i∈{1,2,…,S(k)}中各元素之和是3的倍数,求S(k)的值;
(2)若满足M(i∈{1,2,…,S(k)}中必含有元素3,
①求S(k)的表达式;
②设bk=(-1)k+1$\frac{k+1}{n-k}$S(k+1),Tm=b0+b1+b2+…+bm(m∈N*,m≤n-1),求|$\frac{{T}_{m}}{{C}_{n-1}^{m}}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(x+$\frac{a}{\sqrt{x}}$)6的展开式中,常数项为15,则正数a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.关于θ 的函数f(θ)=cos2θ-2xcosθ-1的最大值记为M(x),则M(x)的解析式为$\left\{\begin{array}{l}{2x}&{x≥0}\\{-2x}&{x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆x2+y2-x-6y+m=0与直线2x+y-3=0交于M、N两点,O为坐标原点,文是否存在实数m,使OM⊥ON,若存在,求出m的值若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若命题p:?x0∈R,x0-2>lgx0,则¬p是(  )
A.?x0∈R,x0-2≤lgx0B.?x0∈R,x0-2<lgx0C.?x∈R,x-2<lgxD.?x∈R,x-2≤lgx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=kx+b,若f(1)=-2,f(-1)=0,则(  )
A.k=1,b=-1B.k=-1,b=-1C.k=-1,b=1D.k=1,b=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=$\frac{x}{{e}^{x}}$,定义f1(x)=f′(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N.经计算f1(x)=$\frac{1-x}{{e}^{x}}$,f2(x)=$\frac{x-2}{{e}^{x}}$,f3(x)=$\frac{3-x}{{e}^{x}}$,…,照此规律.
(Ⅰ)请归纳出fn(x)的表达式;
(Ⅱ)试用数学归纳法证明你的结论.

查看答案和解析>>

同步练习册答案