精英家教网 > 高中数学 > 题目详情
已知复数z1=sinx+λi,z2=m+(m-cosx)i(λ,m,x∈R),且z1=z2
(I)若λ=0,且0<x<π,求x的值;
(II)设f(x)=λcosx,求f(x)的最小正周期和单调递减区间.
【答案】分析:(I)利用两个复数相等的充要条件求得tanx=,再由 0<x<π 可得 x的值.
(II)由z1=z2 可得 λ=sinx-cosx,再利用三角函数的恒等变换化简函数的解析式为sin(2x-)-,由此求得函数 f(x)的最小正周期,由 2kπ+≤2x-≤2kπ+
k∈z,求得x的范围,即可得到f(x)的单调递减区间.
解答:解:(I)若λ=0,且0<x<π,由z1=z2 可得 m=sinx,m-cosx=0,
∴sinx-cosx=0,tanx=.再由 0<x<π 可得 x=
(II)由z1=z2 可得 m=sinx,m-cosx=λ,∴λ=sinx-cosx,
∴f(x)=λcosx=(sinx-cosx )cosx=-=sin(2x-)-
故函数 f(x)的最小正周期等于 =π.
由 2kπ+≤2x-≤2kπ+,k∈z,可得 kπ+≤x≤kπ+,k∈z.
故f(x)的单调递减区间为[kπ-,kπ+],k∈z.
点评:本题主要考查两个复数相等的充要条件,三角函数的恒等变换及化简求值,正弦函数的周期性和单调性,化简函数的解析式为sin(2x-)-,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z1=cosθ-i,z2=sinθ+i,则z1•z2的实部最大值为
 
,虚部最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=cosα+isinα,z2=cosβ+isinβ,|z1-z2|=
2
5
5

求:(1)求cos(α-β)的值;
(2)若-
π
2
<β<0<α<
π
2
,且sinβ=-
5
13
,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=2cosα+(2sinα)i,z2=cosβ+(sinβ)i(α,β∈R),
(1)若z1+z2=
2
+i
,求cos(α-β)的值;
(2)若z2对应的点P在直线x+y-
5
3
=0
上,且0<β<π,求sinβ-cosβ的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=2cosθ+i•sinθ,z2=1-i•(
3
cosθ),其中i是虚数单位,θ∈R.
(1)当cosθ=
3
3
时,求|z1•z2|;
(2)当θ为何值时,z1=z2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=cosα+isinα,z2=cosβ+isinβ,|z1-z2|=1.
(1)求cos(α-β)的值;
(2)若-
π
2
<β<0<α<
π
2
,且sinβ=-
3
5
,求sinα
的值.

查看答案和解析>>

同步练习册答案