精英家教网 > 高中数学 > 题目详情

如图所示,以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆中心,交椭圆于点MN,若直线MF1(F1为椭圆的左焦点)是圆F2的切线,则椭圆的离心率为

[  ]

A.

B.

C.

D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知在椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
中,F1(-c,0)(c>0)是椭圆的左焦点,A(a,0),B(0,b)分别是椭圆的右顶点和上顶点,点O是椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的投影.
(Ⅰ)求证:当a取定值时,点H必为定点;
(Ⅱ)如图所示,当点P在第二象限,以OP为直径的圆与直线AB相切,且四边形ABPH的面积等于3+
2
,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
5
5
,且A(0,2)是椭圆C的顶点.
(1)求椭圆C的方程;
(2)过点A作斜率为1的直线l,设以椭圆C的右焦点F为抛物线E:y2=2px(p>0)的焦点,若点M为抛物线E上任意一点,求点M到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆M:
y2
a2
+
x2
b2
=1
(a>b>0)的四个顶点构成边长为5的菱形,原点O到直线AB的距离为
12
5
,其A(0,a),B(-b,0).直线l:x=my+n与椭圆M相交于C,D两点,且以CD为直径的圆过椭圆的右顶点P(其中点C,D与点P不重合).
(1)求椭圆M的方程;
(2)试判断直线l与x轴是否交于定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012年广东省高二上学期11月月考文科数学 题型:解答题

(本小题满分14分)如图所示,椭圆的离心率为,且A(0,1)是椭圆C的顶点。       

(1)求椭圆C的方程;

(2)过点A作斜率为1的直线,设以椭圆C的右焦点F为抛物线的焦点,若点M为抛物线E上任意一点,求点M到直线距离的最小值。

 

 

 

 

查看答案和解析>>

同步练习册答案