精英家教网 > 高中数学 > 题目详情
9.若tan(θ+$\frac{π}{4}$)=2,则$\frac{sinθ+cosθ}{sinθ-cosθ}$=2.

分析 由条件利同角三角函数的基本关系、两角和差的正切公式,求得要求式子的值.

解答 解:∵tan(θ+$\frac{π}{4}$)=2,则$\frac{sinθ+cosθ}{sinθ-cosθ}$=$\frac{tanθ+1}{tanθ-1}$=-$\frac{tanθ+1}{1-tanθ}$=-tan(θ+$\frac{π}{4}$)=-2,
故答案为:-2.

点评 本题主要考查同角三角函数的基本关系、两角和差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设命题p:?n∈N*,2n≤2n+1,则¬p是(  )
A.?n∈N*,2n≤2n+1B.?n∈N*,2n>2n+1C.?n∈N*,2n=2n+1D.?n∈N*,2n≥2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+A=0的两根,且a1=1.
(1)求证:数列$\{{a_n}-\frac{1}{3}•{2^n}\}$是等比数列;
(2)若${b_n}={log_2}[3{a_n}+{(-1)^n}]$,证明:对一切正整数n,有$\frac{1}{{{b_1}({b_1}+2)}}+\frac{1}{{{b_2}({b_2}+2)}}+…+$$\frac{1}{{{b_n}({b_n}+2)}}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若集合A={x|x=2k-1,k∈Z},B={x|x=4l±1,l∈Z},则(  )
A.A?BB.B?AC.A=BD.A∪B=Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.计算:$\frac{{1-\sqrt{3}i}}{{\sqrt{3}+i}}$的结果是(  )
A.iB.-iC.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a$=(1,$\sqrt{3}}$),$\overrightarrow b$=(3,m),向量$\overrightarrow a$∥$\overrightarrow b$,则实数m=(  )
A.2$\sqrt{3}$B.3$\sqrt{3}$C.-3$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知某几何体的三视图如图所示,则这个几何体体积2$\sqrt{3}$.这个几何体外接球的表面积等于$\frac{28}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.计算cos80°cos20°+sin80°sin20°的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若正数t满足a(2e-t)lnt=1(e为自然对数的底数),则实数a的取值范围为(-∞,0)$∪[\frac{1}{e},+∞)$.

查看答案和解析>>

同步练习册答案