精英家教网 > 高中数学 > 题目详情
某矿产品按纯度含量分成五个等级,纯度X依次为A、B、C、D、E.现从一批该矿产品中随机抽取20件,对其纯度进行统计分析,得到频率分布表如下:
X A B C D E
f a 0.2 0.45 b c
(Ⅰ)若所抽取的20件矿产品中,纯度为D的恰有3件,纯度为E的恰有2件,求a、b、c的值;
(Ⅱ)在(Ⅰ)的条件下,从纯度为D和E的5件矿产品巾任取两件(每件矿产品被取出的可能性相同),求这两件矿产品的纯度恰好相等的概率.
考点:古典概型及其概率计算公式
专题:概率与统计
分析:(Ⅰ)通过频率分布表得推出a+b+c=0.35.纯度为D的恰有3件,纯度为E的恰有2件,分别求出b,c,然后求出a;
(Ⅱ)根据条件列出满足条件所有的基本事件总数,“从纯度为D和E的5件矿产品巾任取两件纯度恰好相等”的事件数,求解即可.
解答: 解:(Ⅰ)由频率分布表得 
a+0.2+0.45+b+c=1,
即a+b+c=0.35,
∵纯度为D的恰有3件,纯度为E的恰有2件,
b=
3
20
=0.15,c=
2
20
=0.1

∴a=0.35-0.15-0.1=0.1.
∴a=0.1,b=0.15,c=0.1;
(Ⅱ)设纯度为D的三件产品分别为D1,D2,D3,纯度为E的两件产品为E1,E2
所有可能的结果为:D1D2,D1D3,D1E1,D1E2
D2D3,D2E1,D2E2
D3E1,D3E2
E1E2
∴所有可能的结果共10个.
设事件A表示“从纯度为D和E的5件矿产品巾任取两件纯度恰好相等”,
则A包含的事件为:D1D2,D1D3,D2D3,E1E2,共4个,
所以所求的概率P(A)=
4
10
=
2
5
点评:本题考查概率、统计等基本知识,考查数据处理能力、运算能力、应用意识.考查函数与方程思想、分类与整合思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={x|x2-2x≤0},N={x|
3+x
1-x
≤0
},U=R,则图中阴影部分表示的集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

运行如图所示的程序框图,则输出的结果S为(  )
A、1007B、1008
C、2013D、2014

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx(b∈R),则下列结论正确的是(  )
A、?b∈R,f(x)在(0,+∞)上是增函数
B、?b∈R,f(x)在(0,+∞)上是减函数
C、?b∈R,f(x)为奇函数
D、?b∈R,f(x)为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
a
2
x2
(Ⅰ)当a=2时,求曲线y=f(x)在点P(3,f(3))处的切线方程;
(Ⅱ)若函数f(x)与g(x)=
1
2
x2-ax+
a2
2
的图象有三个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点A(-1,1),离心率为
6
3

(I)求椭圆C的方程
(II)设点B是点A关于原点的对称点,P是椭圆C上的动点(不同于A,B),直线AP,BP分别与直线x=3交于点M,N,问是否存在点P使得△PAB和△PMN的面积相等,若存在,求出点P的坐标,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右顶点,点D(1,
3
2
)
在椭圆C上,且直线DA与直线DB的斜率之积为-
b2
4

(1)求椭圆C的标准方程;
(2)点P为椭圆C上除长轴端点外的任一点,直线AP,PB与椭圆的右准线分别交于点M,N.
①在x轴上是否存在一个定点E,使得EM⊥EN?若存在,求点E的坐标;若不存在,说明理由;
②已知常数λ>0,求
PM
PN
PA
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:3x2+y2=12,直线x-y-2=0交椭圆C于A,B两点.
(Ⅰ)求椭圆C的焦点坐标及长轴长;
(Ⅱ)求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列语句:
①函数y=sin(
2
-2x)
是偶函数;
②函数y=sin(x+
π
4
)
在闭区间[-
π
2
π
2
]
上是增函数;
③函数y=loga(x-1)+1(a>1)的图象必过定点(2,1)
④函数y=3cos(2x-
π
4
)的对称轴方程为x=
2
+
π
8
,k∈Z;
其中正确的语句的序号是:
 

查看答案和解析>>

同步练习册答案