⑴用综合法证明:;
⑵用反证法证明:若均为实数,且,,,求证中至少有一个大于0.
(1)证明详见解析;(2)证明详见解析.
解析试题分析:(1)充分利用好基本不等式得出、、,进而再利用同向不等式的可加性即可得到结论,注意关注等号成立的条件;(2)先设结论的反面成立即都不大于0,进而得出,另一方面,从而产生了矛盾,进而肯定假设不成立,可得原命题的结论成立.
(1)由(当且仅当时等号成立)可得
(当且仅当时等号成立) ①
(当且仅当时等号成立) ②
(当且仅当时等号成立) ③
所以①+②+③得即,当且仅当时,等号成立;
(2)假设都不大于0即
根据同向不等式的可加性可得 ④
又与④式矛盾
所以假设不成立即原命题的结论中至少有一个大于0.
考点:1.综合法;2.反证法;3.基本不等式的应用.
科目:高中数学 来源: 题型:解答题
若函数满足:集合中至少存在三个不同的数构成等比数列,则称函数是等比源函数.
(1)判断下列函数:①;②中,哪些是等比源函数?(不需证明)
(2)证明:对任意的正奇数,函数不是等比源函数;
(3)证明:任意的,函数都是等比源函数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);
表1
1 | 2 | 3 | |
1 | 0 | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com