精英家教网 > 高中数学 > 题目详情
10.(x2+x+y)5的展开式中,x3y3的系数为(  )
A.10B.20C.30D.40

分析 利用二项式定理的通项公式即可得出.

解答 解:(x2+x+y)5的展开式中,通项公式Tr+1=${∁}_{5}^{r}$y5-r(x2+x)r
令5-r=3,解得r=2.
(x2+x)2=x4+2x3+x2
∴x3y3的系数为2×${∁}_{5}^{2}$=20,
故选:B.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图(如图所示).
分组组距频数频率
一组0≤t<500
二组5≤t<10100.10
三组10≤t<1510
四组15≤t<200.50
五组20≤t≤25300.30
合计0≤t≤251001.00
解答下列问题:
(1)这次抽样的样本容量是多少?
(2)在表中填写出缺失的数据并补全频率分布直方图;
(3)旅客购票用时的中位数为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某人有5把钥匙,其中只有一把可以打开房门,他随意地进行试开,若试过的钥匙放在一旁,打开门时试过的次数ξ为随机变量,则P(ξ=3)等于(  )
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3!}{5!}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD=PD=1,AB=2,ABCD为矩形,点E是线段AB中点.
(1)求证:PE⊥CE;
(2)求三棱锥A-CPE的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ABC=∠BAD=90°,且PA=AB=BC=$\frac{1}{2}$AD=1,PA⊥平面ABCD.
(1)求PB与平面PCD所成角的正弦值;
(2)棱PD上是否存在一点E满足∠AEC=90°?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知{an}是递增的等差数列,a1,a2是方程x2-4x+3=0的两根.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C所对的边分别记作a,b,c.已知B=60°,且a,b,c成等差数列.
(1)求证:a,b,c成等比数列;
(2)若点D在边AC上,且$\overrightarrow{AD}$=2$\overrightarrow{DC}$,求∠CBD的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sinx+cosx=$\frac{1}{5}$,且0<x<π.
(1)求sin2x;
(2)求sinx-cosx;
(2)求sin3x-cos3x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$,g(x)=x3,令h(x)=f(x)•g(x).
(1)讨论函数f(x)的奇偶性;
(2)讨论函数h(x)的奇偶性.

查看答案和解析>>

同步练习册答案